Skip to main content
Log in

Migration and Sorption of Uranium in Various Redox Conditions on the Example of Volcanic-Related Deposits in the Streltsovka Caldera, SE Transbaikalia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The article discusses problems of migration, sorption, and redistribution of uranium in felsic volcanic rocks (ignimbrites) and volcanic glasses of different compositions from the Tulukuev and Novogodnee deposits, located at the upper structural level (the cover of volcano-sedimentary rocks) of the Streltsovka caldera, which hosts Russia’s largest Streltsovka uranium ore field (SOF). The research covers the entire sorption series of rocks and minerals: from abnormally high uranium contents in felsic volcanic rocks and volcanic glasses of the Novogodnee deposit, located in a reducing geochemical environment, to complete uranium removal from mineral concentrators in an oxidizing environment in the Tulukuevsky open pit deposit. The uranium distribution and variations in its content were studied using f-radiography in different zones of metasomatic aureoles, minerals, rock fragments, the matrix and fiamme of ignimbrites, elements of deformational alterations, including mineralized and open fractures of different morphology, as well as in cataclasis, microbrecciation, and veinlet zones, etc. Integrated geological-structural, mineralogical-geochemical, and petrophysical studies and hydrogeochemical and isotope-geochemical monitoring studies of fracture-vein and atmospheric waters have been conducted since 2000 and continue at present. It is shown that the Tulukuev and Novogodnee deposits are unique objects, which can be used for studying the conditions, migration paths, migration mechanisms, and accumulation of uranium in different structural settings under varying redox conditions. It was established that the most important mechanism of uranium retardation is sorption processes on permeable reaction barriers under reducing conditions, formed currently within hydraulically active faults, crosscutting blocks of oxidized rocks. At these natural physicochemical barriers, U(VI) is effectively retained and transformed into insoluble U(IV) form due to the reactivity of Fe–Mn oxyhydroxides, impregnated carbonaceous matter, and vital activity products of microorganisms (ferrihydrides). Comparing the sorption capacity of minerals with respect to uranium allowed us to develop a comparative series of minerals and mineral aggregates in descending order from amorphous Fe and Ti oxides to feldspar and quartz. The above studies can be used when substantiating the search, exploration, and mining of uranium ores at uranium-ore deposits and when considering possible sources of ore matter. The radiogeoecological aspect of surveys involved with substantiating the long-term isolation of radioactive materials and remediation of radionuclide-polluted areas and groundwater horizons is also crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Alexander, W.R. and McKinley, I.G., A review of the application of natural analogues in performance assessment: improving models of radionuclide transport in groundwaters, J. Geochem. Explor, 1992, no. 46, pp. 83–115.

  2. Ames, L.L., McGarrah, J.E., and Walker, V.A., Sorption of uranium and cesium by basalts and an associated secondary smectite, Chem. Geol., 1982, vol. 35, pp. 205–225.

    Article  Google Scholar 

  3. Ames, L.L., McGarrah, J.E., and Walker, V.A., Sorption of constituents from aqueous solutions onto secondary minerals. Uranium, Clays Clay Miner., 1983, vol. 31, no. 5, pp. 321–334.

    Article  Google Scholar 

  4. Andreeva, O.V., Uranium-bearing quartz–carbonate–hydromica metasomatites, Izv. Akad. Nauk SSSR. Ser Geol., 1979, no. 7, pp. 101–113.

  5. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at uranium deposits of Tulukuev Caldera, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 184–196.

    Google Scholar 

  6. Andreeva, O.V., Golovin, V.A., Kozlova, P.S., et al., Evolution of Mesozoic magmatism and ore-forming metasomatic processes in the southeastern Transbaikal Region (Russia), Geol. Ore Deposits, 1996, vol. 38, no. 2, pp. 101–113.

    Google Scholar 

  7. Belova, L.N., Formation conditions of oxidation zones of uranium deposits and uranium mineral accumulations in the gipergenesis zone, Geol. Ore Deposits, 2000, vol. 42, no. 2, pp. 103–110.

    Google Scholar 

  8. Belova, L.N. and Fedorov, O.V., Some new data on mineral composition of the oxidation zone of uranium deposits of the Strel’tsovka ore field, Materialy po geologii uranovykh mestorozhdenii (Proc. on Geology of Uranium Deposits) Moscow: VIMS, 1977, vol. 45, pp. 83–113.

    Google Scholar 

  9. Belova, L.N. and Fedorov, O.V., Gipergennaya mineralogiya mestorozhdenii Strel’tsovskogo rudnogo polya. Silikaty urana i uranovye slyudki (Supergene Mineralogy of the Deposits of the Strel’tsovka Ore Field. Uranium Silicates and Uranium Micas), Moscow: IGEM RAN, 1991.

  10. Belova, L.N., Ryzhov, B.I., Fedorov, O.V., et al., Osobennosti mineral’nogo sostava zon okisleniya gidratno-silikatnogo i uran-molibdatnogo tipov (Mineral Composition of Oxidation Zones of the Hydrate–Silicate and Uranium–Molybdenum Types), Moscow: IGEM RAN, 1981.

  11. Belova, L.N., Ryzhov, B.I., Fedorov, O.V., et al., Issledovaniya uranovoi mineralizatsii v zone gipergeneza (Study of Uranium Mineralization in Supergene Zone), Moscow: IGEM RAN, 1989.

  12. Bodvarsson, G.S., Boyle, W., Patterson, P., and Williams, D., Overview of scientific investigations at Yucca mountain— the potential repository for high-level nuclear waste, J. Contam. Hydrol., 1999, nos. 1–3, pp. 3–24.

  13. Borovec, Z., The adsorbtion of uranium species by fine clay, Chem. Geol., 1981, vol. 32, pp. 45–58.

    Article  Google Scholar 

  14. Bruno, J., Duro, L., and Grive, M., The applicability and limitations of thermodynamic geochemical models to simulate trace element behaviour in natural waters. Lessons learned from natural analogue studies, Chem. Geol., 2002, no. 190, pp. 371–393.

  15. Chapman, N.A., McKinley, I.G., and Smellie, J.A.T., The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste, NAGRA Technical Report Series NTB, 1984, pp. 84–41.

  16. Chudnyavtseva, I.I. and Samonov, A.E., Radioecological landscapes of uranium ore province, Prirodno-antropogennye protsessy i ekologicheskii risk (Natural–Anthropogenic Processes and Ecological Risk), Moscow: ID “Gorodets”, 2004, pp. 399–416.

    Google Scholar 

  17. Chukhrov, F.V., Ermilova, L.P., Gorshkov, A.I., et al., Gipergennye oksidy zheleza v geologicheskikh protsessakh (Supergene Iron Oxides in Geological Processes), Moscow: Nauka, 1975.

  18. Chukhrov, F.V., Zvyagin, B.B., Gorshkov, A.I., et al., Tau Bradley phase as a product of supergene alteration of ores, Izv. Akad. Nauk SSSR. Ser. Geol., 1971, no. 1, pp. 15–25.

  19. Descriptive Uranium Deposit and Mineral System Models, Vienna: IAEA, 2020.

  20. Dubinina, E.O., Golubev, V.N., and Petrov, V.A., Assessment of filtration time of atmospheric waters in the fractured–porous space by the example of rocks of the Tulukuev deposit, Trudy XVIII simpoziuma po geokhimii izotopov im. akad. A.P. Vinogradova (Acad. A.P. Vinogradov 18th Symposium on Isotope Geochemistry), Moscow: GEOKhI RAN, 2007, pp. 90–91.

  21. Dubinina, E.O., Petrov, V.A., and Golubev, V.N., Isotopic parameters of meteoric waters in fractured–porous rocks of the Tulukuev Ore Deposit, Dokl. Earth Sci., 2008, vol. 421A, no. 6, pp. 914–918.

    Article  Google Scholar 

  22. Garrels, R.M. and Ch.L. Christ, Solution, Minerals, and Equilibria, Harper and Row, New York, 1966.

    Google Scholar 

  23. Geological Classification of Uranium Deposits and Description of Selected Examples. IAEA-TECDOC SERIES-1842, Vienna: IAEA, 2018.

  24. Gray, T.R., Hanley, J.J., and Dostal, J., Magmatic enrichment of U, Th and REE in Late Pz rhyolites of South New Brunswick, Canada: evidence from silicate melt inclusions, Econ. Geol., 2011, vol. 106, pp. 127–143.

    Article  Google Scholar 

  25. Haveman, S.A. and Pedersen, K., Microbially mediated redox processes in natural analogues for radioactive waste, J. Contamin. Hydrol., 2002, no. 55, pp. 161–174.

  26. Hsi, C-K.D. and Langmuir, D., Adsorption of uranyl onto ferric oxyhydroxides, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1931–1941.

    Article  Google Scholar 

  27. Ishchukova, L.P., Igoshin, Yu.A., Avdeev, B.V., et al., Geologiya Urulyunguevskoi rudonosnoi zony i molibden-uranovykh mestorozhdenii Strel’tsovskogo rudnogo polya (Geology of the Urulunguev Ore-Bearing Zone and Molybdenum–Uranium Deposits of the Strel’tsovka Ore Field), Moscow: Geoinformmark, 1998.

  28. Kelley, S.D., Newville, M.G., Cheng, L., et al., Uranyl incorporation in natural calcite, Environ. Sci. Technol., 2003, vol. 37, pp. 1284–1287.

    Article  Google Scholar 

  29. Kondrat’eva, I.A., Maksimova, I.G., and Nad"yarnykh, G.I., Uranium distribution in ore-bearing rocks of the Malinov Deposit: evidence from fission radiography, Lithol. Miner. Resour., 2004, vol. 39, no. 4, pp. 333–344.

    Article  Google Scholar 

  30. Langmuir, D., Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposit, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 547–569.

    Article  Google Scholar 

  31. Laverov, N.P., Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Khammer, I., Burmistrov, A.A., and Shchukin, S.I., The Antei uranium deposit: a natural analogue of an SNF repository and an underground geodynamic laboratory in granite, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 339–361.

    Article  Google Scholar 

  32. Luchitsky, I.V., Osnovy paleovulkanologii (Principles of Paleovolcanology), Moscow: Nauka, 1971.

  33. Malkovsky, V.I., Petrov, V.A., Dikov, Yu.P., Aleksandrova, E.V., Bychkova, Ya.V., Mokhov, A.V., and Shulik, L.S., An analysis of the role of colloids in uranium transport in groundwater within the U–Mo deposits of the Streltsovskoe Ore Field (Eastern Transbaikalian Region), Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 29–31.

    Article  Google Scholar 

  34. McKinley, Zachara, J.M., Smith, S.C., et al., The influence of hydrolysis and multiple site-binding reactions on adsorbtion of U (VI) to montmorillonite, Clays Clay Miner., 1995, vol. 43, pp. 586–598.

    Article  Google Scholar 

  35. Mel’nikov, I.V., Mineralogical Features and Geochemical Conditions of the Formation of the Mo–U Deposits: Evidence from the Middle Asian and Transbaikalian Deposits, Doctoral (Geol.-Min.) Dissertation, Moscow: IGEM RAN, 1983.

  36. Melkov,V.G., Prospecting Methods of Uranium Deposits, Atomnaya Energiya, 1956, no. 1, pp. 83–90.

  37. Melkov, V.G. and Sergeeva, A.M., Rol’ tverdykh uglerodistykh veshchestv v formirovanii endogennogo uranovogo orudeneniya (Role of Solid Carbonaceous Matters in the Formation of Endogenous Uranium Deposit), Moscow: Nedra, 1990.

  38. Milton, G.M. and Brown, R.M., Adsorption of uranium from groundwater by common fracture secondary minerals, Can. J. Earth Sci., 1986, vol. 24, pp. 1321–1328.

    Article  Google Scholar 

  39. Morozov, Yu.A., Matveev, M.A., Smul’skaya, A.I., and Kulakovsky, A.L., Two genetic types of pseudotachylytes, Dokl. Earth Sci., 2019, vol. 484, no. 2, pp. 129–133.

    Article  Google Scholar 

  40. Nasedkin, V.V., Petrogenezis kislykh vulkanitov (Petrogenesis of Felsic Volcanics), Moscow: Nauka, 1975.

  41. Nasedkin, V.V., Vodosoderzhashchie vulkanicheskie stekla kislogo sostava, ikh genezis i izmeneniya (Water-Bearing Volcanic Glasses of Felsic Composition, Their Genesis and Alterations), Moscow: Izd-vo AN SSSR, 1963.

  42. Omel’yanenko, B.I., Local uranium distribution in the rocks and minerals as indicator of their geochemical histories, Problemy radiogeologii (Problems of Radiogeology), Moscow: Nauka, 1983.

    Google Scholar 

  43. Omel’yanenko, B.I., Petrov, V.A., and Poluektov, V.V., Behavior of uranium under conditions of interaction of rocks and ores with subsurface water, Geol. Ore Deposits, 2007, vol. 49, no. 5, pp. 378–391.

    Article  Google Scholar 

  44. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Mineral system of the Streltsovka Caldera uranium deposits (East Transbaikalia), Geol. Ore Deposits, 2020, vol. 62, no. 1, pp. 31–48.

    Article  Google Scholar 

  45. Perelman, A.I., Geokhimiya (Geochemistry), Moscow: Vysshaya shkola, 1979.

  46. Petrov,V.A., Tectonophysical and structural-petrophysical indicators of fluid migration in fault zones and methods of their study, Sovremennaya tektonofizika. Metody i rezul’taty (Modern Tectonophysics. Methods and Results), Moscow: IFZ RAN, 2011, Vol. 2, pp. 94–108.

    Google Scholar 

  47. Petrov, V.A., Velichkin, V.I., Lichtner, P.C., Perry, F., Ovseichuk, V.A., and Schukin, S.I., Fractured welded tuffs in Krasnokamensk, Chita region: natural analogue study for radionuclide migration in variably saturated fractured rock, Proc. Int. Conf. Fractured Rock, Toronto: Canada, 2001.

  48. Petrov, V.A., Velichkin, V.I., Poluektov, V.V., Golubev, V.N., Lespinasse, M., Sausse, J., Cuney, M., Leroy, J., Lichtner, P.C., Perry, F., and Schukin, S.I., Assessment of hydraulic properties of fracture network in relation to the uranium transport in oxidizing conditions of welded tuffs, Proc. Int. Conf. on Uranium Geochemistry, Nancy, 2003, pp. 297–300.

  49. Petrov, V.A., Poluektov, V.V., Golubev, V.N., Andreeva, O.V., Dubinina, E.O., Lichtner, P.C., Perry, F.V., Ovseichuk, V.A., Schukin, S.I., Lespinasse, M., Sausse, J., and Cuney, M., Natural analogue studies in variably saturated fractured welded tuffs, Proc. Int. Conf. Rad. Waste. Disp., Distec'04, Berlin: Germany, 2004, pp. 450–457.

  50. Petrov, V.A., Poluektov, V.V., Golubev, V.N., Andreeva, O.V., Kartashov, P.N., Lespinasse, M., Sausse, J., Cuney, M., Lichtner, P.C., Perry, F.V., Galinov, Yu.N., Ovseichuk, V.A., and and Schukin, S.I., Uranium mineralization in oxidized fractured environment of the giant volcanic related uranium field from the Krasnokamensk area, Proc. Int. Symp. Uranium. Prod. and Raw Mat., Vienna: IAEA, 2005.

  51. Petrov, V.A., Lespinas, M., and Khammer, I., Tectonodynamics of fluid-conducting structural elements and migration of radionuclides in massifs of crystalline rocks, Geol. Ore Deposits, 2008, vol. 50, no. 2, pp. 89–111.

    Article  Google Scholar 

  52. Petrov, V.A., Poluektov, V.V., Hammer, J., and Schukin, S.I., Fault-related barriers for uranium transport, Uranium Mining and Hydrogeology, Merkel, B.J. and Hasche-Berger, A., Ed., Berlin–Heidelberg: Springer-Verlag, 2008, pp. 779–789.

  53. Petrov, V.A., Poluektov, V.V., Hammer, J., and Schukin, S.I., Uranium mineralization in fractured welded tuffs of the Krasnokamensk area: transfer from ancient to modern oxidizing conditions, The New Uranium Mining Boom: Challenge and Lessons Learned, Merkel, B. and Schipek, M., Berlin–Heidelberg: Springer-Verlag, 2011.

    Google Scholar 

  54. Petrov, V.A., Poluektov, V.V., Nasimov, R.M., Burmistrov, A.A., Shchukin, S.I., and Khammer, I., Study of natural and technogenic processes at the uranium deposit in granites for substantiation of safe long isolation of SNF, Ekstremal’nye prirodnye yavleniya i katastrofy, vol. 2. Geologiya urana, geoekologiya, glyatsiologiya (Extreme Natural Phenomena and Catastrophes. Volume 2. Uranium Geology, Geoecology, and Glacial Geology), Gliko, A.O., Eds., Moscow: IFZ RAN, 2011, pp. 124–138.

  55. Petrov, V.A., Lespinasse, M., Poluektov, V.V., Cuney, M., Nasimov, R.M., Hammer, J., and Schukin, S.I., Stress-time context of fault permeability at the krasnokamensk area, se transbaikalia, J. Physics: Conf. Ser., 2013, vol. 416, p. 6.

    Google Scholar 

  56. Petrov, V.A., Poluektov, V.V., Khammer, I.R., and Tsulauf, G., Study of mineral and deformational transformations of rocks of the Nizhnekanskii massif for the determination of their retaining abilities for geological burial and isolation of radioactive wastes, Gorn. Zh., 2015, no. 10, pp. 67–77.

  57. Petrov, V.G., Vlasova, I.E., Rodionova, A.A., Yapaskurt, V.O., Korolev, V.V., Petrov, V.A., Poluektov, V.V., Hammer, J., and Kalmykov, S.N., Preferential sorption of radionuclides on different mineral phases typical for host rocks at the site of the future Russian high level waste repository, Appl. Geochem., 2019, vol. 100, pp. 90–95.

    Article  Google Scholar 

  58. Pochvy SSSR (Soils of the USSR), Moscow: Nauka, 1979.

  59. Poluektov, V.V., Petrov, V.A., Andreeva, O.V., and Golubev, V.N., Tulukuev uranium deposit (SE Transbaikalia) as natural analogue of radionuclide migration in SNW disposal, Sb. Tr. F.I. Vol’fson 100., Moscow, Noyabr’, 2007, pp. 161–166.

    Google Scholar 

  60. Prikryl, J.D., et al., Migration behavior of naturally occurring radionuclides at the Nopal I uranium deposit, Chihuahua, Mexico, J. Contam. Hydrol., 1997, vol. 26, pp. 61–69.

    Article  Google Scholar 

  61. Rogov Yu.G., Karpenko I.A., Kuznetsov M.P.et al., Rezul’taty revizionnykh i razvedochnykh rabot v predelakh Strel’tsovskogo rudnogo polya v period 1966–1970 gg. (Results of Revisional and Prospecting Works within the Strel’tsovka Ore Field in 1966–1970), Irkutsk: Sosnovskoe PGO, 1970.

  62. Ryskov, Ya.G. and Demkin, V.A., Razvitie pochv i prirodnoi sredy stepei Yuzhnogo Urala v golotsene (Development of Soils in the Steppe Environment of the South Urals in the Holocene), Pushchino: ONTI PNTs RAN, 1997.

  63. Ryskov, Ya.G., Tsybzhitov, Ts.Kh., and Tsybikdorzhiev, Ts.Ts., Russia’s soil: is it a CO2 source or sink?, Geochem. Int., 2001, vol. 39, no. 6, pp. 577–584.

    Google Scholar 

  64. Salomons, W., Chemical and isotopic composition of carbonates in recent sediments and soils from Western Europe, J. Sediment. Petrol, 1975, vol. 45, no. 2, pp. 440–449.

    Google Scholar 

  65. Savenko, A.V., Sorption of \({\text{UO}}_{2}^{{2 + }}\) on calcium carbonate, Radiochem., 2001, vol. 43, no. 2, pp. 193–196.

    Article  Google Scholar 

  66. Schumacher, D., Hydrocarbon-induced alteration of soils and sediments, Hydrocarbon Migration and its Near-Surface Expression. AAPG Mem., 1996, vol. 66, pp. 71–89.

    Google Scholar 

  67. Serebrennikov, V.S. and Maksimova, I.G., Mechanism of uranium precipitation from carbonated mineral waters, Geokhimiya, 1976, no. 10, pp. 1542–1548.

  68. Shatkov, G.A., Strel’tsovka type of uranium deposits, Regional. Geol. Metallogen., 2015, vol. 63, pp. 85–96.

    Google Scholar 

  69. Smellie, J.A.T., Karlsson, F., and Alexander, W.R., Natural analogue studies: present status and performance assessment implications, J. Contamin. Hydrol., 1997, no. 26, pp. 3–17.

  70. Smellie, J.A.T. and Karlsson, F., The use of natural analogues to assess radionuclide transport, Engin. Geol., 1999, vol. 52, pp. 193–220.

    Article  Google Scholar 

  71. Sovremennye gidrotermy i mineraloobrazovanie (Modern Hydrothermal Vents and Mineral Formation), Moscow: Nauka, 1977.

  72. Struktury i tekstury izverzhennykh i metamorficheskikh porod (Structure and Texture of Igneous and Metamorphic Rocks), Polovinkin, Yu.R., Eds., ch. II, vol. II. M.: Nedra, 1966, Book 2, Vol. 2.

  73. Tsunashima, A., Brindley, G.W., and Bastovanov, M., Adsorbtion of uranium from solutions by montmorillonite; compositions and properties of uranyl montmorillonites, Clays Clay Miner., 1981, vol. 29, no. 1, pp. 10–16.

    Article  Google Scholar 

  74. Turekian, K.K. and Wedepohl, K.H., Distribution of the elements in some major units of the earth’s crust, Geo-Mar. Lett., 1961, vol. 72, no. 2, pp. 175–190.

    Google Scholar 

  75. Uranovye mestorozhdeniya v vulkano-tektonicheskikh strukturakh (Uranium Deposits in Volcanotectonic Structures) Mashkovtsev, G.A, Eds., Moscow: VIMS, 2005.

  76. Vadose Zone Science and Technology Solutions, Looney, B.B. and Falta, R.W. Eds., Columbus: Battelle Press, 2000.

    Google Scholar 

  77. Veshchestvo stepnykh geosistem (na primere Zabaikal’ya) (Matter of Steppe Geosystems by the Example of Transbaikalia), Novosibirsk: Nauka, 1984.

  78. Vinogradov, A.P., Average content of chemical elements in major types of igneous rocks of the Earth’s crust, Geokhimiya, 1962, no. 7, pp. 555–571.

  79. Waite, T.D. Payne, T.E., et al., Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model, Geochim. Cosmochim. Acta, 1995, vol. 58, no. 24, pp. 5465–5478.

    Article  Google Scholar 

Download references

Funding

This study was carried out under the state task of IGEM RAS “Tectonodynamic Settings and Physicochemical Conditions of Formation of Mineral Systems of Main Economic and Genetic Types of Uranium Deposits.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Poluektov, V. A. Petrov or O. V. Andreeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Voroshchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poluektov, V.V., Petrov, V.A. & Andreeva, O.V. Migration and Sorption of Uranium in Various Redox Conditions on the Example of Volcanic-Related Deposits in the Streltsovka Caldera, SE Transbaikalia. Geol. Ore Deposits 63 (Suppl 1), S29–S61 (2021). https://doi.org/10.1134/S1075701522010068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522010068

Keywords:

Navigation