Skip to main content
Log in

Arsenocolusite in Pyrite Ores of the Saum Copper–Zinc Massive Sulfide Deposit, North Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Pyrite ores on the flanks of the Saum copper–zinc massive sulfide deposit are clastic sediments intensely transformed under conditions of acid diagenesis. Colusite in ores is confined to fine-grained pyrite clasts, which are rimmed by later small-crystalline pyrite aggregates. Colusite forms fine dissemination (1–3 µm) and large isometric grains (up to 50–100 µm), contains inclusions of sulvanite, and belongs to arsenocolusite in chemical compositions (wt %): 12.62–14.87 As, 0.19–0.64 Sb, 0.29–1.46 Sn, 3.05–3.23 V, and 1.51–3.20 Fe. The LA ICP MS analysis of fine-grained pyrite revealed minor Ga, Ge, In, and Se contents in composition of arsenocolusite, which are correlated with chemical elements of colusite according to isomorphous substitutions in its formula. Galena, tellurobismuthite, native gold, molybdenite, rutile, monazite, uraninite, and Ba-bearing muscovite are found in fine-grained pyrite in assemblage with colusite. Interaction of sulfide sediments with seawater led to their enrichment in seawater elements (V, Mo, and U) and the deposition of colusite in assemblage with molybdenite and uraninite from trace element-rich diagenetic fluids under their dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ayupova, N.R., Melekestseva, I.Yu., Maslennikov, V.V., et al., Uranium accumulation in modern and ancient Fe–oxide sediments: examples from the Ashadze-2 hydrothermal sulfide field (Mid–Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia), Sed. Geology, 2018, vol. 367, pp. 164–174.

    Google Scholar 

  2. Brumsack, H.–J., Geochemistry of recemt TOC-rich sediments from the Gulf of California and Black Sea, Geol. Rundsch., 1989, vol. 78, no. 3, pp. 851–882.

    Article  Google Scholar 

  3. Butler, I.B. and Nesbitt, R.V., Trace element distribution in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Earth Planet. Sci. Lett., 1999, vol. 167, pp. 335–345.

    Article  Google Scholar 

  4. Crusius, J., Calvert, S., Pedersen, T., and Sage, D., Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth Planet. Sci. Lett., 1996, vol. 145, pp. 65–78.

    Article  Google Scholar 

  5. Cvetkoviċ, L., Paċevski, A., and Tončiċ, T., Occurrence of Sn-bearing colusite in the ore body “T” of the Bor copper deposit, Serbia, Geol. Ore Deposits, 2013, vol. 55, no. 4, pp. 298–304.

    Article  Google Scholar 

  6. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: slyudy i khlority (Clay Minerals: Micas and Chlorites), Moscow: Nauka, 1991. 176 s.

  7. Frank–Kamenetskaya, O.V., Rozhdestvenskaya, I.V., and Yanulova, L.A., New data on the crystal structures of colusites and arsenosulvanites, J. Struct. Chem., 2002, vol. 43, pp. 89–10.

    Article  Google Scholar 

  8. Hannington, M.D., Bleeker, W., and Kjarsgaard, I., Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Greek deposit. II. The bornite zone, Econ. Geol. Monogr., 1999, vol. 10, pp. 225–266.

    Google Scholar 

  9. Kase, K., Yamamoto, M., and Mitsuno, C., Germanium-bearing colusite from the Yanahara Mine, Japan, and its significance to ore genesis, Resour. Geol., 1994, vol. 44, pp. 33–38.

    Google Scholar 

  10. Komuro, K. and Kajiwara, Y., Germanium-bearing colusite in siliceous black ore from the Ezuri Kuroko deposit, Hokuroku district, Japan, Resour. Geol., 2004, vol. 54, no. 4, pp. 447–452.

    Article  Google Scholar 

  11. Maslennikov, V.V., Ayupova, N.R., Safina, N.P., et al., Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia, Minerals, 2019, vol. 3, no. 3, p. 150.

    Article  Google Scholar 

  12. Mednokolchedannye mestorozhdeniya Urala. Geologicheskie usloviya razmeshcheniya (Massive Copper Sulfide Deposits of the Urals. Geological Conditions of Localization), Prokin, V.A., et al., Eds., Sverdlovsk: UNTs AN SSSR, 1985.

  13. Melcher, F., Oberthur, T., and Rammlmair, D., Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu–Zn–Pb–Ag massive sulfide deposit, Otavi Mountain land, Namibia, Ore Geol. Rev., 2006, vol. 28, pp. 32–56.

    Article  Google Scholar 

  14. Mills, R.A., Thomson, J., Elderfield, H., et al., Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge, Earth Planet. Sci. Lett., 1994, vol. 124, no. 1, pp. 35–47.

    Article  Google Scholar 

  15. Moloshag, V.P. and Vikentyev, I.V., New data on germanium–tin mineralization of massive sulfide deposits of the Urals, Ezhegodnik-2008 (Yearbook-2008), Yekaterinburg: IGG UrO RAN, 2009, pp. 220–223.

    Google Scholar 

  16. Moloshag, V.P., Vikentyev, I.V., Gulyaeva, T.Ya., and Tesalina, S.G., Bornite ores of the massive sulfide deposits of the Urals, Litosfera, 2005, no. 3, pp. 99–116.

  17. Novoselov, K.A., Belogub E.V., and Kotlyarov, V.A., Germanium minerals in the sulfide ores of the deposits of the Aleksandrinskii district, Ural’sk. Mineral. Sb., 2007, no. 14, pp. 1–10.

  18. Orlandi, P., Merlino, S., Duchi, G., and Yezzalini, G., Colusite: a new occurrence and crystal chemistry, Can. Mineral., 1981, vol. 19, pp. 423–427.

    Google Scholar 

  19. Pshenichnyi, G.N., Shadlun, T.N., Vyal’sov, L.N., Troneva, N.V., and Basova, G.V., Tin, copper, and iron sulfides in the sulfide ores of the South Urals, Geol. Rud. Mestorozhd., 1972, vol. 14, no. 5, pp. 106–111.

    Google Scholar 

  20. Spiridonov, E.M., Maikanite Cu20(Fe,Cu6Mo2Ge)6S32 and ovamboite Cu20(Fe,Cu,Zn)6W2Ge6S32: new minerals in massive sulfide base metal ores, Dokl. Earth. Sci., 2003, vol. 393, no. 9, pp. 1531–1534.

    Google Scholar 

  21. Spiridonov, E.M., Badalov, A.S., and Kovachev, V.V. Stibiocolusite Cu26V2(Sb, Sn, As)6S32 – a new mineral, Dokl. Akad. Nauk, 1992, vol. 324no. 2, pp. 411–414.

  22. Spry, P.G., Merlino, S., Wang, S., et al., New occurrences and refined crystal chemistry of colusite, with comparisons to arsenosulvanite, Am. Mineral., 1994, vol. 79, pp. 750–762.

    Google Scholar 

  23. Wagner, T. and Monecke, T., Germanium-bearing colusite from the Waterloo volcanic-rock-hosted massive sulfide deposit, Australia: crystal chemistry and formation of colusite-group minerals, Can. Mineral., 2005, vol. 43, pp. 655–669. www.mindat.org

    Article  Google Scholar 

  24. Yushko-Zakharova, O.E., Belyaeva, I.D., and Dubakina, L.S., Presence of germanium mineral forms in sulfide ores, Dokl. Akad. Nauk, 1982, vol. 267, pp. 444–445.

    Google Scholar 

Download references

Funding

The study was supported by state contract no. АААА-А19-119061790049-3 of the Institute of Mineralogy of the South Ural Federal Science Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Ayupova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayupova, N.R., Maslennikov, V.V., Tseluyko, A.S. et al. Arsenocolusite in Pyrite Ores of the Saum Copper–Zinc Massive Sulfide Deposit, North Urals. Geol. Ore Deposits 63, 79–86 (2021). https://doi.org/10.1134/S1075701521010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521010037

Keywords:

Navigation