Skip to main content
Log in

Properties of Zinc Oxide Adsorbent for Adsorbing Hydrogen Sulfide

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The paper defines the conditions for the synthesis of hydrogen sulfide adsorbent based on zinc oxide from basic zinc carbonate in order to produce strong, porous and non-dusting pellets of a sulfur-adsorbing mass. It is proposed to prepare the adsorbent by mixing nanocrystalline and coarsely dispersed ZnO. It was proven that the introduction of solutions of carboxymethyl cellulose and hydroxypropyl cellulose into the extraction paste makes it possible to reduce the fraction of plastic deformations in the ZnO suspension from 79.8 to 56.1%. In this paper the rheological properties of zinc oxide are investigated. According to the Maxwell–Shvedov and Kelvin model, all the studied systems belong to the fourth structural-mechanical type. Tests of a sulfur adsorbent based on zinc oxide suspensions showed that in the temperature range of 300–400°C in the reaction gas mixture H2S 10%, N2 90%, there are completely no sulfur compounds at the outlet. It has been established that the formability of the ZnO-based paste is possible at an optimum moisture content of 33.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Balsamo, M., Cimino, S., Flcao, G., Erto, A., and Lisi, L., Chem. Eng., J., 2016, vol. 304, pp. 399–407. https://doi.org/10.1016/j.cej.2016.06.085

    Article  CAS  Google Scholar 

  2. Golosman, E.Z., Dul’nev, A.V., Efremov, V.N., and Kruglova, M.A., Kataliz v Prom., 2017, vol. 17, no. 6, pp. 487–493. https://doi.org/10.18412/1816-0387-2017-6-487-509

    Article  CAS  Google Scholar 

  3. Prokof’ev, V.Yu., Il’in, A.P., and Basova, T.V., Izv. Vuzov. Khimiya i Khim. Tekhnologiya, 2006, vol. 49, no. 4, pp. 90–95.

    Google Scholar 

  4. Chao, Y., Jian, W., Hui-Ling, F., Ju, S., Jie, M., and Chao, H., Fuel, 2018, vol. 215, pp. 695-703. https://doi.org/10.1016/j.fuel.2017.11.037

    Article  CAS  Google Scholar 

  5. Christian, F., Pekka, S., Noora, K., Esa, K., and Mary-Leena, K., Energy Fuels, 2020, vol. 34, no. 3, pp. 3316–3325. https://doi.org/10.1021/acs.energyfuels.9b04276

    Article  CAS  Google Scholar 

  6. Balsamo, M., Cimino, S., Flcao, G., Erto, A., and Lisi, L., Chem. Eng., J., 2016, vol. 304, pp. 399–407. https://doi.org/10.1016/j.cej.2016.06.085

    Article  CAS  Google Scholar 

  7. Garces, H.F., Galindo, H.M., Garces, L.J., Hunt, J., Morey, A., and Suib, S.L., Microp. Mesopor. Mater., 2010, vol. 127, no. 3, pp. 190–197. https://doi.org/10.1016/j.micromeso.2009.07.022

    Article  CAS  Google Scholar 

  8. Prokof’ev, V.Yu., Razgovorov, P.B., and Il’in, A.P., Ivan. Gos. Khim.-Tekhnol. Univ., Moscow: KRASAND, 2013.

    Google Scholar 

  9. RU Patent 2580731 (Publ. 2016).

  10. Il’in, A.A., Il’in, A.P., Rumyantsev, R.N., and Smirnov, N.N., Izv. Vuzov. Khimiya Khim. Tekhnologiya, 2011, vol. 54, no. 1, pp. 82–85.

    Google Scholar 

  11. Belkina, E.I. and Orekhova, S.M., Analiticheskaya khimiya i fiziko-khimicheskie metody analiza: Ucheb.-metod. posobie (Analytical Chemistry and Physical and Chemical Methods of Analysis: Textbook.-Method. Allowance), St. Petersburg: Universitet ITMO, 2017.

    Google Scholar 

  12. Ndue, K., Devabrata, M., Gaballah, I., and Bernard, D., Thermochim. Acta, 2004, vol. 410, pp. 93–100. https://doi.org/10.1016/S0040-6031(03)00396-4

    Article  CAS  Google Scholar 

  13. Moezzi, A., Cortie, M., Dowd, A., and McDonagh, A., J. Nanopart. Res., 2014, vol. 16, no. 4, pp. 2–7. https://doi.org/10.1007/s11051-014-2344-z

    Article  CAS  Google Scholar 

  14. Kheifets, L.I. and Neimark, D.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment for the implementation of research and with the scholarship support of the President of the Russian Federation. Topics no. FZZW-2020-0010 and no. 15493GU/2020. The study was conducted using the resources of the Center for the Collective Use of Scientific Equipment of the ISUCT (with the support of the Russian Ministry of Education and Science, agreement no. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ilyin.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 114–118, December, 2022 https://doi.org/10.31857/S0044461822010133

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, K.O., Ilyin, A.A., Veres, K.A. et al. Properties of Zinc Oxide Adsorbent for Adsorbing Hydrogen Sulfide. Russ J Appl Chem 95, 113–117 (2022). https://doi.org/10.1134/S1070427222010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222010141

Keywords:

Navigation