Skip to main content
Log in

Methanol enhanced catalytic viscosity-reduction of heavy oil by transition metal-Mannich base complex under low temperature

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A series of transition metal-Mannich base complex was synthesized and screened for catalytic aquathermolysis of heavy oil and the results showed that the Ni(II)-Mannich base complex is the most effective one. The structure of catalyst was characterized by Fourier transform infrared (FTIR), ultraviolet and visible spectrophotometer (UV), and the group compositions C/H/N elemental analysis (EL), and thermogravimetric analysis (TGA) of the heavy oil were also conducted. The viscosity of the heavy oil can be decreased by 82.6% using 1.0 wt % catalyst with 15 wt % methanol in a reaction under 180°С for 24 h, and the composition analysis shows that 9.0% asphaltene is converted to resin and saturated HC. The group composition and the element content of the heavy oil before and after the aquathermolysis reaction were tested and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, C.Z., Heavy Oil Exploitation Technology, Beijing Petroleum Industry Publishing Inc., 1998.

    Google Scholar 

  2. Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., Greaves, M., Energy Environ. Sci., 2010, vol. 3, pp. 700-714.

    Article  CAS  Google Scholar 

  3. Weissman, J.G., Fuel Process. Technol. 1997, vol. 50, pp. 199-213.

    Article  CAS  Google Scholar 

  4. Hyne, J.B. and Greidanus, J.W., Caracas Venezuela, 1982, p. 25–30.

    Google Scholar 

  5. Clark, P.D. and Hyne, J.B., AOSTRA J. Res., 1984, vol. 1, pp. 15–20.

    CAS  Google Scholar 

  6. Hyne, J.B., AOSTRA Synopsis Report, no. 50, Quathermolysis, 1986.

    Google Scholar 

  7. Clark, P.D. and Hyne, J.B., AOSTRA J. Res., 1990, vol. 29, pp. 29–39.

    Google Scholar 

  8. Hyne, J.B., 2nd UNITAR International Conference on Heavy Crude Oil and Tar Sands, Beijing: Petroleum Industrial Press, 1988.

    Google Scholar 

  9. Clark, P.D., Hyne, J.B., and Tyrer, J.D., Fuel, 1983, vol. 62, pp. 959–962.

    Article  CAS  Google Scholar 

  10. Clark, P.D., Hyne, J.B., and Tyrer, J.D., Fuel, 1984, vol. 63, pp. 125–128.

    Article  CAS  Google Scholar 

  11. Clark, P.D., Hyne, J.B., and Tyrer, J.D., Fuel, 1984, vol. 63, pp. 1649–1645.

    Article  CAS  Google Scholar 

  12. Clark, P.D., Dowling, N.I., Hyne, J.B., and Lesage, K.L., Fuel, 1987, vol. 66, pp. 1353–1357.

    Article  CAS  Google Scholar 

  13. Clark, P.D., Dowling, N.I., Lesage, K.L., and Hyne, J.B., Fuel, 1987, vol. 66, pp. 1699–1702.

    Article  CAS  Google Scholar 

  14. Maity, S.K., Ancheyta, J., and Marroquín, G., Energy Fuels 2010, vol. 24, pp. 2809-2816.

    Article  CAS  Google Scholar 

  15. Cordova, J., Pereira, P., Guition, J., Andriollo, A., Cirilo, A., and Granadillo, F., US Patent 6043182, 2000.

  16. Clark, P.D. and Kirk, M.J., Energy Fuels, 1994, vol. 8, pp. 380–387.

    Article  CAS  Google Scholar 

  17. Fan, H.F., Liu, Y.J., and Zhao, X.F., Fuel Chem, Technol., 2001, vol. 29, pp. 430–433.

    CAS  Google Scholar 

  18. Fan, Z.X., Zhao, F.L., and Wang, J., Fuel Chem Technol., 2006, vol. 34, pp. 315–318.

    CAS  Google Scholar 

  19. He, S.Z. and Fan, H.F., Chem. Eng., 2006, vol. 8, nos. 1, 2, p. 9.

    Google Scholar 

  20. Jing, P., Li, Q.B., and Han, M., Petrochem. Technol., 2007, vol. 36, pp. 237–241.

    Google Scholar 

  21. Zhang, J., Li, X.L., Chen, G., Su, H.J., and Zhao, W., J. Fuel Chem. & Tech. 2014, vol. 42, no. 4, pp. 443-448.

    Article  CAS  Google Scholar 

  22. Wang, L., Yang, J.Y., Zhou, W.F., and Xu, X.R., Chem. Ind. & Eng.Progress, 2015, vol. 34, no. 4, pp. 980–984.

    CAS  Google Scholar 

  23. Ye, Y.Q., Ma, J.J., Li, Y.K., Yang, B., Yang, X.Z., and Hu, Q.F., Phys. Testing & Chem. Analysis (Part B: Chem. Analysis), 2013, vol. 49, no. 2, pp. 161–164.

    CAS  Google Scholar 

  24. Arnold, M., Brown, D.A., Deeg, O., et al., Inor. Chem., 1998, vol. 37, no. 12, pp. 2920–2925.

    Article  CAS  Google Scholar 

  25. Liu, Y.J. and Fan, H.F., Energy & Fuels, 2002, vol. 16, pp. 842–846.

    Article  CAS  Google Scholar 

  26. Tang, Y., Liu, Y., Zhu, P., Xue, Q.S., Chen, L., He, M.Y., and Lu, Y., Am. Inst. Chem. Eng. J., 2009, vol. 55, no. 5, pp. 1217–1229.

    Article  CAS  Google Scholar 

  27. Fajun, Z., Resesrch on Mechanism and Application of Downhole Viscosity Reduction Upgrading of Heavy Oil, Daqing Daqing Petroleum Institute, 2008.

    Google Scholar 

  28. Chao, K., Yanling, C., et al., Energy Fuels, 2012, vol. 26, pp. 1152–1159.

    Article  CAS  Google Scholar 

  29. Wang, Y.Q., Study on Catalytic Aquathermolysis of Heavy Oil at Relatively Low Temperature, Wuhan China University of Geosciences, 2010.

    Google Scholar 

  30. Fan, H.F., Zhang, Y., and Lin, Y.J., Fuel, 2009, vol. 83, pp. 2035-2039.

    Article  Google Scholar 

  31. Shen, D.H., Xie, J.J., and Wang, X.C., Special Oil & Gas Reservoirs, 2005, vol. 12, no. 2, pp. 85–87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Chen or Ayodeji Jeje.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Yuan, W., Su, H. et al. Methanol enhanced catalytic viscosity-reduction of heavy oil by transition metal-Mannich base complex under low temperature. Russ J Appl Chem 89, 1853–1860 (2016). https://doi.org/10.1134/S1070427216110173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216110173

Navigation