Skip to main content
Log in

Evolutionary Ecology in the 21st Century: New Concepts and Development Prospects

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The ideas of the evolutionary ecology of the 20th century and its modern conceptual space are considered with regard to new knowledge of the contents of population and evolutionary synecology. The article proposes (1) a population cenotic approach to analyzing the covariation of cenopopulations of sympatric species and taxocenes in space and historical time; (2) an approach to assessing the intragroup morphological disparity in cenopopulations of sympatric species and taxocenes as a measure of morphogenetic stability. Consideration is given to experimental evolutionary ecology as a particular methodological area. Prospects for the formation of evolutionary ecology as an interdisciplinary applied science are discussed in view of the necessity of predicting regional biocenotic crises and rapid coevolutionary changes in biotic communities in a technogenic environment against the background of predicted unfavorable trends of climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shvarts, S.S., Evolyutsionnaya ekologiya zhivotnykh. Ekologicheskie mekhanizmy evolyutsionnogo protsessa (The Evolutionary Ecology of Animals: Ecological Mechanisms of the Evolutionary Process), Sverdlovsk, 1969.

    Google Scholar 

  2. Pavlov, D.S. and Bukvareva, E.N., Biodiversity and life support of humankind, Herald Russ. Acad. Sci., 2007, vol. 77, no. 6, pp. 550–562.

    Article  Google Scholar 

  3. Rotherham, I.D., Recombinant ecology: A hybrid future? Sheffield, UK: Springer, 2017, p. 85.

    Book  Google Scholar 

  4. Crutzen, P.J. and Stoermer, E.F., The Anthropocene, Global Change News, 2000, vol. 41, pp. 17–18.

    Google Scholar 

  5. Steffen, W., Grinevald, J., Crutzen, P., and McNeil, J., The Anthropocene: Conceptual and historical perspectives, Philos. Trans. R. Soc. A, 2011, vol. 369, pp. 842–867.

    Article  Google Scholar 

  6. Zalasiewicz, J., Williams, M., Steffen, W., and Crutzen, P., The new world of the Anthropocene, Environ. Sci. Technol., 2010, vol. 44, pp. 2228–2231.

    Article  CAS  PubMed  Google Scholar 

  7. Zherikhin, V.V., Izbrannye trudy po paleoekologii i filotsenogenetike (Selected Works in Paleoecology and Phylocenogenetics), Moscow: KMK, 2003.

    Google Scholar 

  8. Moyne, S. and Neige, P., The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 248, pp. 82–95.

    Article  Google Scholar 

  9. Ivits, E., Cherlet, M., Mehl, W., and Sommer, S., Ecosystem functional units characterized by satellite observed phenology and productivity gradients: A case study for Europe, Ecol. Indic., 2013, vol. 27, pp. 17–28.

    Article  Google Scholar 

  10. Read, A.F. and Clark, J.S., The next 20 years of ecology and evolution, Trends Ecol. Evol., 2006, vol. 21, no. 7, pp. 354–355.

    Article  PubMed  Google Scholar 

  11. Schoener, T.W., The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics, Science, 2011, vol. 331, pp. 426–429.

    Article  CAS  PubMed  Google Scholar 

  12. Sutherland, W.J., Freckleton, R.P., Goodfray, H.Ch.J., et al., Identification of 100 fundamental ecological questions, J. Ecol., 2013, vol. 101, pp. 58–67.

    Article  Google Scholar 

  13. Alberti, M., Eco-evolutionary dynamics in an urbanizing planet, Trends Ecol. Evol., 2015, vol. 30, no. 2, pp. 114–126.

    Article  PubMed  Google Scholar 

  14. Jablonka, E. and Lamb, M.J., Transgenerational epigenetic inheritance, in Evolution: The Extended Synthesis, Pigliucci, M. and Müller, G.B., Eds., Cambridge, MA: MIT Press, 2010.

    Google Scholar 

  15. Bonduriansky, R., Rethinking heredity, again, Trends Ecol. Evol., 2012, vol. 27, no. 6, pp. 330–336.

    Article  CAS  PubMed  Google Scholar 

  16. Burggren, W., Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives, Biology, 2016, vol. 5, no. 24, pp. 2–22.

    Google Scholar 

  17. Waddington, C.H., Canalization of development and the inheritance of acquired characters, Nature, 1942, vol. 150, pp. 563–565.

    Article  Google Scholar 

  18. Jablonka, E. and Lamb, M.J., Epigenetic inheritance and evolution, Trends Ecol. Evol., 1996, vol. 11, pp. 266–267.

    Article  Google Scholar 

  19. Ledón-Rettig, C.C., Ecological epigenetics: An introduction to the symposium, Integr. Comp. Biol., 2013, vol. 53, pp. 307–318.

    Article  PubMed  Google Scholar 

  20. Duncan, E.J., Gluckman, P.D., and Dearden, P.K., Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype?, J. Exp. Zool. B: Mol. Dev. Evol., 2014, vol. 322 pp. 208–220.

    Article  CAS  Google Scholar 

  21. Shishkin, M.A., Epigenetic system as an object of selective transformation, in Morfologiya i evolyutsiya zhivotnykh (Animal Morphology and Evolution), Moscow: Nauka, 1986, pp. 63–73.

    Google Scholar 

  22. Shishkin, M.A., Evolution as an epigenetic process, in Sovremennaya paleontologiya (Modern Paleontology), vol. 2: Obshchie zakonomernosti evolyutsii organicheskogo mira (General Patterns in the Evolution of the Organic World), Moscow: Nedra, 1988, pp. 142–168.

    Google Scholar 

  23. Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism as a Whole in Individual and Historical Development), Moscow: Nauka, 1982.

    Google Scholar 

  24. Schmalhausen, I.I., Stabilizing selection and its place among the factors of evolution, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.

    Google Scholar 

  25. Waddington, C.H., The epigenotype, Endeavour, 1942, vol. 1, pp. 18–20.

    Google Scholar 

  26. Dickins, T.E. and Rahman, Q., The extended evolutionary synthesis and the role of soft inheritance in evolution, Proc. R. Soc. Lond. B, 2012, vol. 279, pp. 2913–2921.

    Article  Google Scholar 

  27. Dupont, C., Armant, D.R., and Brenner, C.A., Epigenetics: Definition, mechanisms and clinical perspective, Semin. Reprod. Med., 2009, vol. 27, pp. 403–408.

    Article  CAS  Google Scholar 

  28. Bilichak, A. and Kovalchuk, I., Transgenerational response to stress in plants and its application for breading, J. Exp. Biol., 2016, vol. 67, pp. 2081–2092.

    CAS  Google Scholar 

  29. Pigliucci, M., Do we need an extended evolutionary synthesis?, Evolution, 2007, vol. 61, no. 2, pp. 2743–2749.

    Article  PubMed  Google Scholar 

  30. Laland, K., Matthews, B., and Feldman, M.W., An introduction to niche construction theory, Evol. Ecol., 2016, vol. 30, pp. 191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laland, K.N., Odling-Smee, F.J., and Feldman, M.W., Evolutionary consequences of niche construction and their implications for ecology, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, no. 18, pp. 10242–10247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Patterns of Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  33. Petrusewicz, K., Darwin’s volution theory is an ecological one, Ekol. Polska, 1959, vol. 5, no. 4, pp. 297–263.

    Google Scholar 

  34. Kashkarov, D.N., Sreda i soobshchestvo (osnovy sinekologii) (Environment and Community: Fundamentals of Synecology), Moscow: Gos. Med. Izd., 1933.

    Google Scholar 

  35. Elton, C., Animal Ecology and Evolution, Oxford, 1930.

    Google Scholar 

  36. Severtsov, S.A., Dinamika naseleniya i prisposobitel’naya evolyutsiya zhivotnykh (Population Dynamics and Adaptive Evolution in Animals), Moscow: Akad. Nauk SSSR, 1941.

    Google Scholar 

  37. Severtsov, S.A., Problemy ekologii zhivotnykh (Problems in Animal Ecology), vol. 1., Moscow: Akad. Nauk SSSR, 1951.

  38. Hutchinson, G.E., Concluding remarks, Cold Spring Harb. Symp. Quant. Biol., 1957, vol. 22, pp. 415–427.

    Article  Google Scholar 

  39. Hutchinson, G.E., The Ecological Theater and Evolutionary Play, New Haven, CT: Yale Univ. Press, 1965.

    Google Scholar 

  40. MacArthur, R.H., The Theory of Island Biogeography, Princeton, NJ: Princeton Univ. Press, 1967.

    Google Scholar 

  41. Chernov, Yu.I., Evolutionary ecology: Essence and Prospects, Usp. Sovrem. Biol., 1996, vol. 116, no. 3, pp. 277–291.

    Google Scholar 

  42. Beklemishev, V.N., On the principles of comparative parasitology as applied to bloodsucking arthropods, Med. Parazitol. Parazit. Bolezni, 1945, vol. 14, no. 1, pp. 3–11.

    CAS  Google Scholar 

  43. Mirzoyan, E.N., K istorii global’noi ekologii. Kontseptsiya Geomeridy V.N. Beklemisheva (On the History Global Ecology: V.N. Beklemishev’s Geometrid Comcept), Moscow: Ekol. Tsentr IIET RAN, 2007, part 1.

    Google Scholar 

  44. Shvarts, S.S., The Evolutionary Ecology of Animals. Ecological Mechanisms of the Evolutionary Process, New York: Consultants Bureau, 1977.

    Google Scholar 

  45. Orians, G.H., Natural selection and ecological theory, Am. Nat., 1962, vol. 96, no. 890, pp. 257–263.

    Article  Google Scholar 

  46. Lack, D.J., Evolutionary ecology, Anim. Ecol., 1965, vol. 53, no. 2, pp. 237–245.

    Google Scholar 

  47. Shvarts, S.S., The problem of species and new methods in systematics, in Eksperimental’nye issledovaniya problemy vida (Experimental Studies on the Problem of Species), Sverdlovsk, 1973, pp. 3–18.

    Google Scholar 

  48. Lerner, I.M., Ecological genetics (synthesis), in Genetics Today, vol. 2, New York: Pergamon, 1965.

  49. Ford, E.B., Ecological Genetics, London: Methuen, 1964.

    Google Scholar 

  50. Pianka, E.R., Evolutionary Ecology, 2nd ed., New York: Harper and Row, 1978. Translated under the title Evolyutsionnaya ekologiya, Moscow: Mir, 1981.

    Google Scholar 

  51. Giller, P.S., Community Structure and the Niche, London: Chapman and Hall, 1984. Translated under the title Struktura soobshchestv i ekologicheskaya nisha, Moscow: Mir, 1988.

    Book  Google Scholar 

  52. Rosenzweig, M.L., Reconciliation ecology and the future of species diversity, Oryx, 2003, vol. 37, no. 2, pp. 194–205.

    Article  Google Scholar 

  53. Chernov, Yu.I., Ekologiya i biogeografiya. Izbrannye raboty (Ecology and Biogeography: Selected Works), Moscow: KMK, 2008.

    Google Scholar 

  54. Shvarts, S.S., The principle of optimal phenotype, Zh. Obshch. Biol., 1968, vol. 29, no. 1, pp. 12–24.

    CAS  PubMed  Google Scholar 

  55. Shvarts, S.S., Smirnov, V.S., and Dobrinskii, L.N., Metod morfofiziologicheskikh indikatorov v ekologii nazemnykh pozvonochnykh (The Method of Morphophysiological Indicators in the Ecology of Terrestrial Vertebrates), Sverdlovsk: Ural Fil. Akad. Nauk SSSR, 1968.

    Google Scholar 

  56. Bol’shakov, V.N., Puti prisposobleniya melkikh mlekopitayushchikh k gornym usloviyam (Pathways of Adaptation to Mountain Conditions in Small Mammals), Moscow: Nauka, 1972.

    Google Scholar 

  57. Pokrovskii, A.V. and Bol’shakov, V.N., Eksperimental’naya ekologiya polevok (Experimental Ecology of Voles), Moscow: Nauka, 1979.

    Google Scholar 

  58. Shvarts, S.S., Evolution and the biosphere, in Problemy biogeotsenologii (Problems in Biogeocenology), Moscow: Nauka, 1973, pp. 213–228.

    Google Scholar 

  59. West-Eberhard, M.J., Developmental Plasticity and Evolution, Oxford: Oxford Univ. Press, 2003.

    Google Scholar 

  60. Jablonka, E. and Lamb, M.J., Evolution in Four Dimensions. Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life, Cambridge, MA: MIT Press, 2005.

    Google Scholar 

  61. Schmalhausen, Stabilizing selection and its place among the factors of evolution, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.

    Google Scholar 

  62. Thompson, J.N., Rapid evolution as an ecological process, Trends Ecol. Evol., 1998, vol. 13, pp. 329–332.

    Article  CAS  PubMed  Google Scholar 

  63. Thompson, J.N., Mutualistic webs of species, Science, 2006, vol. 312, pp. 372–373.

    Article  CAS  PubMed  Google Scholar 

  64. Laland, K.N., Uller, T., Feldman, M.W., Sterelny, K., et al., The extended evolutionary synthesis: Its structure, assumptions and predictions, Philos. Trans. R. Soc. Lond. B., 2015, vol. 282, pp. 1–14.

    Google Scholar 

  65. Severtsov, A.S., Evolyutsionnaya ekologiya pozvonochnykh zhivotnykh (The Evolutionary Ecology of Vertebrates), Moscow: KMK, 2013.

    Google Scholar 

  66. Naumov, N.P., Ekologiya zhivotnykh (Animal Ecology), Moscow: Vysshaya Shkola, 1963.

    Google Scholar 

  67. Shilov, I.A., Ekologiya (Ecology), Moscow: Vysshaya Shkola, 1997.

    Google Scholar 

  68. Vasil’ev, A. G., Vasil’eva, I.A., Gorodilova, Yu.V., and Dobrinskii, N.L., Chernov’s compensation principle and the effect of rodent community completeness on the variability of bank vole (Clethrionomys glareolus) population in the Middle Urals, Russ. J. Ecol., 2017, vol. 48, no. 2, pp. 161–169.

    Article  Google Scholar 

  69. Vasil’ev, A.G., Vasil’eva, I.A., and Kourova, T.P., Analysis of coupled geographic variation of three shrew species from southern and northern Ural taxocenes, Russ. J. Ecol., 2015, vol. 46, no. 6, pp. 552–558.

    Article  Google Scholar 

  70. Bolnick, D.I. and Fitzpatrick, B.M., Sympatric speciation: Models and empirical evidence, Annu. Rev. Ecol. Evol. Syst., 2007, vol. 38, pp. 459–487.

    Article  Google Scholar 

  71. Mina, M.V., Mironovsky, A.N., and Dgebuadze, Yu.Yu., Lake Tana large barbs: Phenetics, growth and diversification, J. Fish Biol., 1996, vol. 48, pp. 383–404.

    Article  Google Scholar 

  72. Albertson, R.C. and Kocher, T.D., Genetic and developmental basis of cichlid trophic diversity, Heredity, 2006, vol. 97, pp. 211–221.

    Article  CAS  PubMed  Google Scholar 

  73. Post, D.M. and Palkovacs, E.P., Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play, Philos. Trans. R. Soc. Lond. B, 2009, vol. 364, pp. 1629–1640.

    Article  Google Scholar 

  74. Facon, B., Genton, B.J., Shykoff, J., et al., A general eco-evolutionary framework for understanding bioinvasions, Trends Ecol. Evol., 2008, vol. 21, no. 3, pp. 130–135.

    Article  Google Scholar 

  75. Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A., and Sineva, N.V., Aftereffects of muskrat introduction in Western Siberia: Morphological and functional aspects, Russ. J. Biol. Invasions, 2017, vol. 8, no. 1, pp. 1–9.

    Article  Google Scholar 

  76. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Coupled technogenic morphological variation of two sympatric rodent species in the zone of influence from the Eastern Ural Radioactive Trace, Vopr. Radiats. Bezopasn., 2013, no. 4, pp. 4–13.

    Google Scholar 

  77. Chernov, Yu.I., Species diversity and compensatory phenomena in communities and biotic systems, Zool. Zh., 2005, vol. 84, no. 10, pp. 1221–1238.

    Google Scholar 

  78. Webb, C.O., Ackerly, D.D., McPeek, M.A., and Donoghue, M.J., Phylogenies and community ecology, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 475–505.

    Article  Google Scholar 

  79. Marzluff, J.M., Urban evolutionary ecology, Stud. Avian Biol., 2012, vol. 45, pp. 287–308.

    Google Scholar 

  80. Vasil’ev, A.G., Vasil’eva, I.A., Gorodilova, Yu.V., and Chibiryak, M.V., Relationship between morphological disparity and taxonomic diversity in rodent communities in the zone of influence from the Eastern Ural Radioactive Trace in the Southern Urals, Russ. J. Ecol., 2010, vol. 41, no. 2, pp. 153–158.

    Article  Google Scholar 

  81. Bukvareva, E.N. and Aleshchenko, G.M., Printsip optimal’nogo raznoobraziya biosistem (The Principle of Optimal Biosystem Diversity), Moscow: KMK, 2013.

    Google Scholar 

  82. Glotov, N.V., Genetic heterogeneity of natural populations with respect to quantitative traits, Extended Abstract of Doctoral (Biol.) Dissertation, Leningrad: Leningr. Gas. Univ., 1983.

    Google Scholar 

  83. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.

    Google Scholar 

  84. Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A., et al., Morphogenetic effects of resettlement of mole voles (Ellobius talpinus Pall., 1770) from the southern population to the northern boundary of the species range, Dokl. Biol. Sci., 2018, vol. 478, pp. 26–28.

    Article  PubMed  Google Scholar 

  85. Vasil’ev, A.G., Bol’shakov, V.N., Vasil’eva, I.A., et al., assessment of nonselective elimination effects in rodent communities by methods of geometric morphometrics, Russ. J. Ecol., 2016, vol. 47, no. 4, pp. 383–391.

    Article  Google Scholar 

  86. Shvarts, S.S., Experimental methods for studying the initial stages of the microevolutionary process (problem setting), in Vnutrividovaya izmenchivost’ nazemnykh pozvonochnykh zhivotnykh i mikroevolyutsiya (Intraspecific Variation and Microevolution of Terrestrial Vertabrates), Sverdlovsk, 1965, pp. 21–32.

    Google Scholar 

  87. Pokrovskii, A.V and Bol’shakov, V.N., Eksperimental’naya ekologiya polevok (The Experimental Ecology of Voles), Moscow: Nauka, 1979.

    Google Scholar 

  88. Vasilyev, A.G., Vasilyeva, I.A., and Bol’shakov, V.N., Evolutionary-ecological analysis of trends in phenogenetic variation of homologous morphological structures: From populations to ecological series of species, Russ. J. Ecol., 2010, vol. 41, no. 5, pp. 365–371.

    Article  Google Scholar 

  89. Vasil’ev, A.G. and Vasil’eva, I.A., Gomologicheskaya izmenchivost’ morfologicheskikh struktur i epigeneticheskaya divergentsiya taksonov: osnovy populyatsionnoi meronomii (Homological Variation of Morphological Structures and Epigenetic Divergence of Taxa: Bases of Population Meronomy), Moscow: KMK, 2009.

    Google Scholar 

  90. Vasil’ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the Way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.

    Google Scholar 

  91. Vasil’ev, A.G., Vasil’eva, I.A., and Shkurikhin, A.O., Geometricheskaya morfometriya: ot teorii k praktike (Geometric Morphometrics: From Theory to Practice), Moscow: KMK, 2018.

    Google Scholar 

  92. Haloin, J.R. and Strauss, Sh.Y., Interplay between ecological communities and evolution review of feedbacks from microevolutionary to macroevolutionary scales. Ann. N. Y. Acad. Sci., 2008, vol. 1133, pp. 87–125.

    Article  PubMed  Google Scholar 

  93. Iordanskii, N.N., Makroevolyutsiya. Sistemnaya teoriya (Macroevolution: A Systemic Theory), Moscow: Nauka, 1994.

    Google Scholar 

  94. Vasil’ev, A.G. and Vasil’eva, I.A., Epigenetic rearrangements in populations as a probable mechanism of the advent of a biocenotic crisis, Vestn. Nizhegorod. Gos. Univ. im. N.M. Lobachevskogo, Ser. Biol., 2005, no. 1 (9), pp. 27–38.

    Google Scholar 

  95. Skinner, M.K., Environmental epigenetics and unified theory of the molecular aspects of evolution: A neo-Lamarckian concept that facilitates neo-Darwinian evolution, Genome Biol. Evol., 2015, vol. 7, pp. 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vasil’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.G. Evolutionary Ecology in the 21st Century: New Concepts and Development Prospects. Russ J Ecol 50, 102–114 (2019). https://doi.org/10.1134/S1067413619020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413619020103

Keywords

Navigation