Skip to main content
Log in

Study of 90Y Sorption with Nanodiamonds as Potential Carriers in the Radiopharmaceutical Composition

  • Published:
Radiochemistry Aims and scope

Abstract

The sorption of 90Y with nanodiamond (ND) and oxidized nanodiamond (oxND) was studied for their subsequent application as part of radiopharmaceuticals for β-therapy in nuclear medicine. The sorption kinetics was studied as a function of pH and salt background of aqueous solutions. It was found that the optimal media for 90Y sorption are aqueous solutions with pH from 5 to 7, as well as 0.9% NaCl solution and phosphate-buffered saline therewith as shown the presence of a salt background has no significant effect on sorption. The study of the stability of 90Y conjugates with ND and oxND in a model biological medium (fetal bovin serum) demonstrated that desorption does not exceed 27% in 24 h for the studied ND samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Asadian, S., Mirzaei, H., Kalantari, B.A., Davarpanah, M.R., Mohamadi, M., Shpichka, A., Nasehi, L., Es, H.A., Timashev, P., Najimi, M., Gheibi, N., Hassan, M., and Vosough, M., Pharmacol. Res., 2020, vol. 160, ID 105070.

    Article  CAS  PubMed  Google Scholar 

  2. Datta, P. and Ray, S., J. Label. Compd. Radiopharm., 2020, vol. 63, pp. 333–355.

    Article  CAS  Google Scholar 

  3. Chu, S.Y.F., Ekström, L.P., and Firestone, R.B., Table of Radioactive Isotopes, Database Version 1999-02-28. http://nucleardata.nuclear.lu.se

  4. Carr, B.I., Kondragunta, V., Buch, S.C., and Branch, R.A., Cancer, 2010, vol. 116, pp. 1305–1314.

    Article  CAS  PubMed  Google Scholar 

  5. d’Abadie, P., Hesse, M., Louppe, A., Lhommel, R., Walrand, S., and Jamar, F., Molecules, 2021, vol. 26, ID 3966. https://doi.org/10.3390/molecules26133966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarwar, A., Kudla, A., Weinstein, J.L., Ali, A., Malik, R., Bullock, A., Khwaja, K.O., Curry, M., Faintuch, S., and Ahmed, M., Eur. Radiol., 2021, vol. 31(3), pp. 1316–1324. https://doi.org/10.1007/s00330-020-07231-8

    Article  CAS  PubMed  Google Scholar 

  7. Wiseman, G.A. and Witzig, T.E., Cancer Biother. Radiopharm., 2005, vol. 20, pp. 185–188.

    Article  CAS  PubMed  Google Scholar 

  8. Borghaei, H. and Schilder, R.J., Semin. Nucl. Med., 2004, vol. 34, pp. 4–9.

    Article  PubMed  Google Scholar 

  9. Miszczyk, M., Jochymek, B., and Miszczyk, L., Matysiakiewicz, J., Spindel, J., Jabłońska, I., Mrożek, T., Chrobok, A., Tomasik, P., Zakrzewski, T., and Tukiendorf, A., Ann. Nucl. Med., 2020, vol. 34, pp. 94–101.

    Article  CAS  PubMed  Google Scholar 

  10. Magalhães, A.F., de Oliveira, L.C.O., Pitella, F.A., Wichert-Ana, L., Engel, E.E., and Barbieri, C.H., Hematol. Transfus. Cell Ther., 2021, vol. 43(1), pp. 15–20. https://doi.org/10.1016/j.htct.2019.11.001

    Article  PubMed  Google Scholar 

  11. Shapovalov, V.V., Mel’nichenko, N.A., Nerozin, N.A., Tkachev, S.V., Togaeva, N.R., and Kham’yanov, S.V., Radiochemistry 2012, vol. 54, no. 4, pp. 388–390. https://doi.org/10.1134/S1066362212040133

    Article  CAS  Google Scholar 

  12. Muchtaridi, M., Kamal, E., Subarnas, A., and Mutalib, A., Indones. J. Chem., 2017, vol. 17, pp. 15–21.

    Article  CAS  Google Scholar 

  13. Qaim, S.M., Scholten, B., and Neumaier, B., J. Radioanal. Nucl. Chem., 2018, vol. 318, pp. 1493–1509.

    Article  CAS  Google Scholar 

  14. Dietz, M.L. and Horwitz, E.P., Int. J. Radiat. Appl. Instrum., 1992, vol. 43, pp. 1093–1101.

    Article  CAS  Google Scholar 

  15. Chakravarty, R., Pandey, U., Manolkar, R.B., Dash, A., Venkatesh, M., and Pillai, M.R.A., Nucl. Med. Biol., 2008, vol. 35, pp. 245–253.

    Article  CAS  PubMed  Google Scholar 

  16. Majkowska-Pilip, A., Gawęda, W., Żelechowska-Matysiak, K., Wawrowicz, K., and Bilewicz, A., Nanomaterials, 2020, vol. 10, ID 1366.

    Article  PubMed Central  Google Scholar 

  17. Xing, Y. and Dai, L., Nanomedicine, 2009, vol. 4, pp. 207–218.

    Article  CAS  PubMed  Google Scholar 

  18. Schrand, A.M., Hens, S.A.C., and Shenderova, O.A., Solid State Mater. Sci., 2009, vol. 34, pp. 18–74.

    CAS  Google Scholar 

  19. Lam, R. and Ho, D., Expert Opin. Drug Deliv., 2009, vol. 6, pp. 883–895.

    Article  CAS  PubMed  Google Scholar 

  20. Uthappa, U.T., Arvind, O.R., Sriram, G., Losic, D., Ho-Young-Jung, Kigga, M., and Kurkuri, M.D., J. Drug Deliv. Sci. Technol., 2020, vol. 60, ID 101993.

    Article  Google Scholar 

  21. Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y., Nat. Nanotechnol., 2012, vol. 7, pp. 11–23.

    Article  CAS  Google Scholar 

  22. Tinwala, H. and Wairkar, S., Mater. Sci. Eng, pp. 2019, vol. 97, pp. 913–931.

    Article  Google Scholar 

  23. Rojas, S., Gispert, J.D., Martín, R., Abad, S., Menchón, C., Pareto, D., Víctor, V.M., Álvaro, M., García, H., and Herance, J.R., ACS Nano., 2011, vol. 5, pp. 5552–5559.

    Article  CAS  PubMed  Google Scholar 

  24. Kazakov, A.G., Garashchenko, B.L., Yakovlev, R.Y., Vinokurov, S.E., Kalmykov, S.N., and Myasoedov, B.F., Diam. Relat. Mater., 2020, vol. 104, ID 107752.

    Article  Google Scholar 

  25. Kazakov, A.G., Garashchenko, B.L., Yakovlev, R.Yu., Vinokurov, S.E., Kalmykov, S.N., and Myasoedov, B.F., Radiochemistry, 2020, vol. 62, no. 5, pp. 592–598. https://doi.org/10.1134/S1066362220050057

    Article  CAS  Google Scholar 

  26. Kazakov, A.G., Garashchenko, B.L., Ivanova, M.K., Vinokurov, S.E., and Myasoedov, B.F., Nanomaterials, 2020, vol. 10, ID 1090.

    Article  PubMed Central  Google Scholar 

  27. Kazakov, A.G., Garashchenko, B.L., Yakovlev, R.Yu., Vinokurov, S.E., and Myasoedov, B.F., Radiochemistry, 2020, vol. 62, no. 6, pp. 752–758. https://doi.org/10.1134/S1066362220060077

    Article  CAS  Google Scholar 

  28. Kazakov, A.G., Garashchenko, B.L., Babenya, Yu.S., Ivanova, M.K., Vinokurov, S.E., and Myasoedov, B.F., Vopr. Radiats. Bezopasnosti, 2020, no. 3, pp. 72–82.

    Google Scholar 

  29. Pichestapong, P., Sriwiang, W., and Injarean, U., Energy Procedia, 2016, vol. 89, pp. 366–372.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 18-13-00413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kazakov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 1, pp. 60–64, April, 2022 https://doi.org/10.31857/S0033831122010051

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A.G., Babenya, J.S., Ivanova, M.K. et al. Study of 90Y Sorption with Nanodiamonds as Potential Carriers in the Radiopharmaceutical Composition. Radiochemistry 64, 44–48 (2022). https://doi.org/10.1134/S1066362222010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222010076

Keywords:

Navigation