Skip to main content
Log in

Photochemical Degradation of Organic Pollutants in Solutions of Soil Humic Acids

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Chernozem humic acid (HA) fractions with nominal molecular sizes (MS) >100, 30–100, 5–30 and <5 kDa were obtained, using a combination of low-pressure preparative size exclusion chromatography with analytical polyacrylamide gel electrophoresis or multistep ultrafiltration. The initial HA and fractions were tested for the ability to destroy model aromatic compounds 2,4,6-trimethylphenol and furfurol in aqueous solution when illuminated with polychromatic light in the range 300–450 nm under laboratory conditions. It has been found that chernozem HA fractions with MS less than 5 kDa had the maximum ability to decompose the above-mentioned substances, while fractions with MS above 30 kDa practically did not perform this function. The data obtained allow us to explain partially the mechanisms of the photoinduced transformation of many organic pollutants by soil humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. N. Drozdova, S. V. Patsaeva, and D. A. Khundzhua, “Fluorescence of dissolved organic matter as a marker for distribution of desalinated waters in the Kara Sea and bays of Novaya Zemlya archipelago,” Oceanology (Engl. Transl.) 57, 41–47 (2017).

  2. M. M. Kononova, Soil Organic Matter (Academy of Sciences of the USSR, Moscow, 1963) [in Russian].

    Google Scholar 

  3. I. V. Sokolova and O. N. Chaikovskaya, “Effect of humic acids on photoprocesses in aqueous media,” Vestn. Tomsk. Gos. Pedagog. Univ. 78, 42–46 (2008).

  4. O. A. Trubetskoi, D. V. Demin, and O. E. Trubetskaya, “Fluorescent properties of low-molecular-weight fractions from chernozem humic acids,” Eurasian Soil Sci. 46, 1020–1025 (2013).

    Article  Google Scholar 

  5. O. A. Trubetskoi and O. E. Trubetskaya, “Reversed-phase high-performance liquid chromatography of the stable electrophoretic fractions of soil humic acids,” Eurasian Soil Sci. 48, 148–156 (2015).

    Article  Google Scholar 

  6. J. J. Alberts and M. Takacs, “Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms,” Org. Geochem. 35, 243–256 (2004).

    Article  Google Scholar 

  7. C. Belin, C. Quellec, M. Lamotte, M. Ewald, and Ph. Simon, “Characterization by fluorescence of the dissolved organic matter in natural water: application to fractions obtained by tangential ultrafiltration and XAD resin isolation,” Environ. Technol. 14, 1131–1144 (1993).

    Article  Google Scholar 

  8. E. S. Boyle, N. Guerriero, A. Thiallet, R. D. Vecchio, and N. V. Blough, “Optical properties of humic substances and CDOM: relation to structure,” Environ. Sci. Technol. 43, 2262–2268 (2009).

    Article  Google Scholar 

  9. S. Canonica, B. Hellrung, and J. Wirz, “Oxidation of phenols by triplet aromatic ketones in aqueous solution,” J. Phys. Chem. A 104, 1226–1232 (2000).

    Article  Google Scholar 

  10. S. Canonica, B. Hellrung, P. Müller, and J. Wirz, “Aqueous oxidation of phenylurea herbicides by triplet aromatic ketones,” Environ. Sci. Technol. 40, 6636–6641 (2006).

    Article  Google Scholar 

  11. J. Dahlén, S. Bertilsson, and C. Pettersson, “Effects of UV-A irradiation on dissolved organic matter in humic surface waters,” Environ. Int. 22, 501–506 (1996).

    Article  Google Scholar 

  12. H. Gao and R. G. Zepp, “Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States,” Environ. Sci. Technol. 32, 2940–2946 (1998).

    Article  Google Scholar 

  13. W. R. Haag and J. Hoigne, “Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters,” Environ. Sci. Technol. 20, 341–348 (1986).

    Article  Google Scholar 

  14. J. T. Jasper, M. T. Nguyen, Z. L. Jones, N. S. Ismail, D. L. Sedlak, J. O. Sharp, R. G. Luthy, A. J. Horne, and K. L. Nelson, “Unit process wetlands for removal of trace organic contaminants and pathogens from municipal wastewater effluents,” Environ. Eng. Sci. 30, 421–436 (2013).

    Article  Google Scholar 

  15. K. Kadir and K. L. Nelson, “Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water,” Water Res. 50, 307–317 (2014).

    Article  Google Scholar 

  16. G. McKay, K. D. Couch, S. P. Mezyk, and F. L. Rosario-Ortiz, “Investigation of the coupled effects of molecular weight and charge-transfer interactions on the optical and photochemical properties of dissolved organic matter,” Environ. Sci. Technol. 50, 8093–8102 (2016).

    Article  Google Scholar 

  17. P. Schmitt-Kopplin, N. Hetkorn, H.-R. Shulten, and A. Kettrup, “Structural changes in dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere,” Environ. Sci. Technol. 32, 2531–2541 (1998).

    Article  Google Scholar 

  18. O. Trubetskaya, L. Shaloiko, D. Demin, V. Marchenkov, I. Proskuryakov, C. Coelho, and O. Trubetskoj, “Combining electrophoresis with detection under ultraviolet light and multiple ultrafiltration for isolation of humic fluorescence fractions,” Anal. Chim. Acta 690, 263–268 (2011). https://doi.org/10.1016/j.aca.2011.02.016

    Article  Google Scholar 

  19. O. A. Trubetskoj, O. E. Trubetskaya, G. V. Afanas’eva, O. I. Reznikova, and C. Saiz-Jimenez, “Polyacrylamide gel electrophoresis of soil humic acid fractionated by size exclusion chromatography and ultrafiltration,” J. Chromatogr. A 767, 285–292 (1997).

    Article  Google Scholar 

  20. O. A. Trubetskoj, C. Richard, G. Voyard, V. V. Marchenkov, and O. E. Trubetskaya, “Molecular size distribution of fluorophores in aquatic natural organic matter: application of HPSEC with multi-wavelength absorption and fluorescence detection following LPSEC-PAGE fractionation,” Environ. Sci. Technol. 52, 5287–5295 (2018). https://doi.org/10.1021/acs.est.7b03924

    Article  Google Scholar 

  21. J. Wenk, M. Aeschbacher, M. Sander, U. von Gunten, and S. Canonica, “Photosensitizing and inhibitory effects of ozonated dissolved organic matter on triplet-induced contaminant transformation,” Environ. Sci. Technol. 49, 8541–8549 (2015).

    Article  Google Scholar 

  22. R. G. Zepp, P. F. Schlotzhauer, and R. M. Sink, “Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances,” Environ. Sci. Technol. 19, 74–81 (1985).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-016-00078-a and 19-05-00056-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Trubetskoi.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubetskoi, O.A., Patsaeva, S.V. & Trubetskaya, O.E. Photochemical Degradation of Organic Pollutants in Solutions of Soil Humic Acids. Eurasian Soil Sc. 52, 1075–1080 (2019). https://doi.org/10.1134/S1064229319090102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319090102

Keywords

Navigation