Skip to main content
Log in

Optimized Extreme Learning Machine for Intelligent Spectrum Sensing in 5G systems

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A two-level learned distributed networking (LDN) structure that uses existing machine learning (ML) algorithms and the novel Optimized Extreme Learning Machine (OELM) algorithm to perform intelligent spectrum sensing for 5G systems has been proposed and implemented. This novel technique uses input vectors like received signal strength indicator, the distance between Cognitive Radio users and gateways, and energy vectors to train the model. Extreme Learning Machine optimized by BAT algorithm outperforms the existing Machine Learning techniques in terms of detection accuracy, false alarm, detection probability and cross validation curves at different SNR scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Haykin, IEEE J. Sel. Areas in Commun. 23, 2 (2005).

    Article  Google Scholar 

  2. Y. Chen and H. Oh, IEEE Commun. Surv. & Tut. 18, 1 (2016).

    Article  Google Scholar 

  3. J. Mitola and G. Q. Maguire, IEEE Pers. Commun. 6, 4 (1999)

    Article  Google Scholar 

  4. M. Agiwal, A. Roy, and N. Saxena, IEEE Commun. Surv. & Tut. 18, 3 (2016).

    Article  Google Scholar 

  5. C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, IEEE Wireless Commun. 24, 2 (2017).

    Article  Google Scholar 

  6. M. Shafi and A.F. Molisch, IEEE J. Sel. Areas Commun. 35, 6 (2017).

    Google Scholar 

  7. R. Li and Z. Zhao, IEEE Wireless Commun. 24, 5 (2017).

    Article  Google Scholar 

  8. N. Abbas, Y. Nasser, and K. E. Ahmad, Eur. J. Wireless Commun. & Netw. 174, (2015).

  9. W. Wang, A. Kwasinski, D. Niyato, and Z. Han, IEEE Commun. Sur. & Tut. 18, 3 (2016).

    Google Scholar 

  10. Y. Zhang, F. Tian, B. Song, and X. Du, IEEE Wireless Commun. 23, 4 (2016).

    Google Scholar 

  11. Y. Zhang, B. Song, S. Gao, X. Du, and M. Guizani, IEEE Access 6, (2018).

  12. S. Lall, A. K. Sadhu, A. Konar, K. K. Mallik, and S. Ghosh, “Multi-agent reinfocement learning for stochastic power management in cognitive radio network,” in Proc. Int. Conf. on Microelectronics, Computing and Communications, (MicroCom), Durgapur, Jan. 23–25, 2016, (MicroCom), pp. 1–6.

  13. S. Tubachi, M. Venkatesan, and A. V. Kulkarni, “Predictive learning model in cognitive radio using reinforcement learning,” in IEEE Int. Conf. Power, Control, Signals and Instrumentation Engineering, Chennai, 2017 (IEEE, New York, 2017), pp. 564– 567.

  14. M. H. Ling and K. A. Yau, IEEE Trans. Cog. Commun. Netw. 5, 1 (2019).

    Article  Google Scholar 

  15. Z. Li, W. Wu, X. Liu, and P. Qi, IET Commun. 12, 19 (2018).

    Google Scholar 

  16. K. M. Thilina and K. W. Choi, IEEE J. on Sel. Areas Commun. 31, 11 (2013).

    Article  Google Scholar 

  17. J. Tian, IEEE Trans. IEEE Trans. Veh. Technol. 68, 11 (2019).

    Google Scholar 

  18. M. K. Giri and S. Majumder, “Extreme learning machine based cooperative spectrum sensing in cognitive radio networks,” in Proc. 7th Int. Conf. on Signal Processing and Integrated Networks (SPIN), Noida, India, 2020 (SPIN, 2020).

  19. K. W. Choi, E. Hossain, and D. I. Kim, IEEE Trans. on Wireless Commun. 10, 6 (2011).

    Google Scholar 

  20. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, NeuroComputing 70, 1 (2006).

    Article  Google Scholar 

  21. G.-B. Huang, Z. Bai, L. L. C. Kasun, and C. M. Vong, IEEE Comp. Intel. Mag. 10, 2 (2015).

    Article  Google Scholar 

  22. I. Chaturvedi and E. Ragusa, J. Frank. Inst. 355, 4 (2018).

    Google Scholar 

  23. A. M. A. Sattar, Ö. F. Ertugrul, and B. Gharabaghi, Neural Comp. App. 31, 1 (2019).

    Google Scholar 

  24. V. Christou, M. G. Tsipouras, and N. Giannakea, Neurocomputing 361, 10 (2019).

    Article  Google Scholar 

  25. L. Y. Chong, T. S. Ong, and A. B. J. Teoh, Applied Soft Comp. 75, (2019).

  26. B. Adarsh, T. Raghunathan, and T. Jayabarathi, Energy 96, 666 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the help given by the lab staff at the Department of ECE, Indira Gandhi Delhi Technical University for solving any software and system malfunctions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kansal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kansal, P., Kumar, A. & Gangadharappa, M. Optimized Extreme Learning Machine for Intelligent Spectrum Sensing in 5G systems. J. Commun. Technol. Electron. 66, 322–332 (2021). https://doi.org/10.1134/S1064226921040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921040045

Keywords:

Navigation