Skip to main content
Log in

Effect of Uniaxial Tension on Nonlinear Conductivity and Structural Transformation of the Charge Density Wave in TaS3 Below the Temperature of Liquid Nitrogen

  • RADIO PHENOMENA IN SOLIDS AND PLASMA
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this study, we analyze the evolution of current-voltage characteristics of a quasi-one-dimensional TaS3 conductor under uniaxial tension in the temperature range of 150–40 K. At all temperatures, elongation is found to lead to formation of an “ultracoherent” charge density wave (CDW) the main feature of which is a sharp increase in conductivity under an electric field that is higher than the threshold: above 100 K, the transition in the dependence on ε occurs almost abruptly while, below 90 K, elongation leads to an intermediate region in which the threshold field increases sharply and is poorly defined due to weak nonlinear conductivity. The result proves the occurrence of a spatially non-uniform state of the CDW below 90 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. A sample in this state can be represented as a mixture of the old and UC CDW. Simulation of the mixture conductivity showed that the domains of the old and the UC CDW are connected in parallel, and not in series. Thus, the UC CDW is formed in the form of lamellas.

  2. In the threshold voltage region, vertical spikes are visible on IV characteristics recorded at ε > εc. Such noise spikes are observed at a sharp change in the readings of the lock-in detector and are typical for measurements in the voltage-controlled mode.

  3. A sharp increase in conductivity was also observed in the \(E_{{\text{t}}}^{{{\text{UC}}}}\) region on IV characteristics of this sample in an unstretched state at T < 70 K.

  4. Please note that notation Et is mixed up at ε = 0 and ε = 0.4%. in Fig. 6 in [15].

REFERENCES

  1. P. Monceau, Advances in Physics 61, 325 (2012).

    Article  Google Scholar 

  2. T. Takoshima, M. Ido, T. Tsutsumi, et al., Sol. State Commun. 35, 911 (1980).

    Article  Google Scholar 

  3. S. K. Zhilinskii, M. E. Itkis, I. Yu. Kal’nova, et al., Zh. Eksp. Teor. Fiz. 85, 362 (1983).

    Google Scholar 

  4. M. E. Itkis, F. Ya. Nad’, and P. Monceau, J. Phys.: Cond. Matter 2 (22), 8327 (1990).

    Google Scholar 

  5. V. Ya. Pokrovskii, S. V. Zaitsev-Zotov, P. Monceau, et al., J. Phys.: Condens. Matter 5, 9317 (1993).

    Google Scholar 

  6. V. E. Minakova, A. N. Taldenkov, and S. V. Zaitsev-Zotov, JETP Lett. 110, 200 (2019).

    Article  Google Scholar 

  7. S. V. Zaitsev-Zotov and V. E. Minakova, Phys. Rev. Lett. 97, 266404 (2006).

    Article  Google Scholar 

  8. S. Sridhar, D. Reagor, and G. Grüner, Phys. Rev. B 34, 2223 (1986).

    Article  Google Scholar 

  9. F. Nad’ and P. Monceau, Phys. Rev. B 51, 2052 (1995).

  10. D. Starešinić, K. Biljaković, W. Brütting, et al., Phys. Rev. B 65, 165109 (2002).

  11. V. Ya. Pokrovskii and S. V. Zaitsev-Zotov, Synth. Met. 32, 321 (1989).

    Article  Google Scholar 

  12. S. N. Artemenko and A. F. Volkov, Zh. Eksp. Teor. Fiz. 81, 1872 (1981).

    Google Scholar 

  13. V. B. Preobrazhenskii, A. N. Taldenkov, and I. Yu. Kal’nova, Pis’ma Zh. Eksp. Teor. Fiz. 40, 183 (1984).

    Google Scholar 

  14. V. B. Preobrazhensky, A. N. Taldenkov, and S. Yu. Shabanov, Sol. State Commun. 54, 399 (1985).

    Article  Google Scholar 

  15. T. A. Davis, W. Schaffer, M. J. Skove, et al., Phys. Rev. B 39, 10094 (1989).

    Article  Google Scholar 

  16. J. W. Brill, Handbook of Elastic Properties of Solids, Liquids and Gases, Ed. by M. Levy (Academic, New York, 2001), Vol. 2.

    Google Scholar 

  17. S. G. Zybtsev and V. Ya. Pokrovskii, Physica A 460, 34 (2015).

    Article  Google Scholar 

  18. S. G. Zybtsev and V. Ya. Pokrovskii, Phys. Rev. B 94, 115140 (2016).

    Article  Google Scholar 

  19. S. G. Zybtsev, V. Ya. Pokrovskii, O. M. Zhigalina, D. N. Khmelenin, D. Staresinic, S. Sturm, and E. Tchernychova, JETP 124, 665 (2017).

    Article  Google Scholar 

  20. K. Das, M. Chung, and M. J. Skove, et al., Phys. Rev. B 52, 7915 (1995).

    Article  Google Scholar 

  21. M. V. Nikitin, V. Ya. Pokrovskii, S. G. Zybtsev, and A. V. Frolov, JETP Lett. 109, 51 (2019).

    Article  Google Scholar 

  22. R. S. Lear, M. J. Skove, E. P. Stillwell, et al., Phys. Rev. B 29, 5656 (1984).

    Article  Google Scholar 

  23. M. V. Nikitin, V. Ya. Pokrovskii, and S. G. Zybtsev, J. Commun. Technol. Electron. 63, 1217 (2018).

    Article  Google Scholar 

  24. Z. Z. Wang, H. Salva, P. Monceau, et al., J. Phys. Lett. 44, 311 (1983).

    Article  Google Scholar 

  25. W. G. Lyons and J. R. Tucker, Phys. Rev. B 40, 1720 (1989).

    Article  Google Scholar 

  26. K. Maki and A. Virosztek, Phys. Rev. B 33, 2852 (1986).

    Article  Google Scholar 

  27. S. G. Zybtsev, V. Ya. Pokrovskii, and S. V. Zaitsev-Zotov, Nat. Commun. 1 (85) (2010).

  28. D. V. Borodin, S. V. Zaitsev-Zotov, F. Ya. Nad’, Zh. Eksp. Teor. Fiz. 87, 1394 (1987).

    Google Scholar 

  29. A. V. Golovnya, V. Ya. Pokrovskii, and P. M. Shadrin, Phys. Rev. Lett. 88, 246401 (2002).

    Article  Google Scholar 

  30. S. Abe, J. Phys. Soc. Jpn. 55, 1987 (1986).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 17-02-01343 and 18-02-00931). The study of the effect of deformation on nonlinear conductivity was partly supported by the Russian Science Foundation, project No. 17-12-01519. A.V. Frolov and A.P. Orlov performed experimental studies at the expense of budget funding in the framework of the Russian State task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Nikitin.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, M.V., Frolov, A.V., Orlov, A.P. et al. Effect of Uniaxial Tension on Nonlinear Conductivity and Structural Transformation of the Charge Density Wave in TaS3 Below the Temperature of Liquid Nitrogen. J. Commun. Technol. Electron. 65, 1192–1197 (2020). https://doi.org/10.1134/S1064226920100058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920100058

Navigation