Skip to main content
Log in

Analysis of Dynamic Processes in Biological Systems Using Acousto-Optic Video Spectrometry

  • APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS IN BIOLOGY AND MEDICINE
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A measurement setup based on a transmission microscope with double acousto-optical wavelength selection is proposed for detection of high-quality spectral images with a size of 1920 × 1200 pixels in the visible wavelength range with a spectral resolution of 2.5 nm at a wavelength of 632 nm. The efficiency of the proposed approach and setup is demonstrated in the study of the transition of Misgurnus fossilis embryos from the 32nd to the 33rd stage. Correctness of the conclusions is proven in a comparison with the results of the corresponding ultrasonic study. Analysis of time dependences of the transmission spectra is performed for six spatial regions of the embryo including perivitelline space and head and tail sections. Such substantially different dependences can be used, in particular, for noninvasive monitoring and analysis of changes in the functional state of embryos related to the stage-to-stage transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. J. Steenbergen, N. Bardine, and F. Sharif, Chemosphere, No. 183, 147 (2017).

  2. S. Brox, A. P. Ritter, E. Küster, and T. Reemtsma, Aquatic Toxicology, No. 157, 134 (2014).

    Article  Google Scholar 

  3. R. Shirakashi, M. Mischke, P. Fischer, et al., Biochem. Biophys. Res. Commun. 428 (1), 127 (2012).

    Article  Google Scholar 

  4. A. V. Zhirmunskii and V. I. Kuz’min, Critical Levels in the Development of Natural Systems (Nauka, Leningrad, 1990) [in Russian].

    Google Scholar 

  5. G. Jung, M. Hug, C. Halter, et al., BMC Biotechnology, No. 13, 53 (2013).

    Article  Google Scholar 

  6. V. I. Kuz’min, A. F. Gadzaov, A. B. Burlakov, et al., Tekhnol. Zhivykh Sist., No. 2, 35 (2018).

  7. N. Villamizar, L. M. Vera, N. S. Foulkes, and F. J. Sánchez-Vázquez, Zebrafish 11 (2), 173 (2014).

    Article  Google Scholar 

  8. R. Y. Wang, T. Zhang, Q. Bao, and D. M. Rawson, Eur. Biophysics J. 35, 224 (2006).

    Article  Google Scholar 

  9. A. A. Kostomarova, Objects of Developmental Biology (Nauka, Moscow, 1975), p. 309 [in Russian].

    Google Scholar 

  10. A. B. Burlakov, A. F. Gadzaov, A. S. Machikhin, and D. D. Khokhlov, Biomed. Radioelektronika, No. 2, 47 (2019).

    Google Scholar 

  11. A. P. Goutzoulis and D. R. Rape, Design and Fabrication of Acousto-Optic Devices (CRC, Boca Raton, 2004).

    Google Scholar 

  12. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications. N.Y.: Wiley, 1992.

    Google Scholar 

  13. A. Machikhin, V. Batshev, and V. Pozhar, J. Opt. Soc. Am. A 34, 1109 (2017).

    Article  Google Scholar 

  14. A. S. Machikhin and V. E. Pozhar, Kvant. Elektron. 45 (2), 161 (2015).

    Article  Google Scholar 

  15. I. Kutuza, V. Pozhar, and V. Pustovoit, Proc. SPIE 5143, 165 (2003).

    Article  Google Scholar 

  16. B. Park, S. Lee, S. C. Yoon, et al., Proc. SPIE 8027, 802707 (2011).

    Article  Google Scholar 

  17. Q. Li, X. He, Y. Wang, et al., J. Biomed. Opt. 18, 100901 (2013).

    Article  Google Scholar 

  18. O. V. Pol’shchikova, A. S. Machikhin, A. G. Ramazanova, et al., Opt. & Spektrosk. 126, 237 (2019).

    Google Scholar 

  19. A. S. Machikhin, A. V. Shurygin, and V. E. Pozhar, Instrum. & Experim. Tech. 59, 692 (2016).

    Article  Google Scholar 

  20. T. L. Szabo, Diagnostic Ultrasonic Imaging: Inside Out. A (Elsevier, Amsterdam, 2004).

    Google Scholar 

  21. R. G. Maev, Advances in Acoustic Microscopy and High Resolution Imaging: from Principles to Applications (Wiley, New York, 2013).

    Book  Google Scholar 

  22. F. S. Foster, M. Y. Zhang, Y. Q. Zhou, et al., Ultrasound in Medicine & Biology 28, 1165 (2002).

    Article  Google Scholar 

  23. G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1987; Mir, Moscow, 1990).

  24. A. B. Burlakov, V. I. Kuz’min, A. F. Gadzaov, et al., Ontogenez 48, 28 (2017).

    Google Scholar 

Download references

COMPLIANCE WITH STANDARDS OF RESEARCH INVOLVING ANIMALS

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Funding

This work was supported by the State Project of the Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences. The development and fabrication of the AO filter was supported by the State Project of the Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Machikhin.

Additional information

Translated by A. Chikishev

This work was reported at the Third International Youth Conference “Modern Achievements in Information and Communication Technologies” (Astrakhan, October 1–5, 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlakov, A.B., Khokhlov, D.D., Machikhin, A.S. et al. Analysis of Dynamic Processes in Biological Systems Using Acousto-Optic Video Spectrometry. J. Commun. Technol. Electron. 65, 851–857 (2020). https://doi.org/10.1134/S1064226920070037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920070037

Navigation