Skip to main content
Log in

Effect of Higher Harmonics on the Accurate Calculation of Dynamic Phase-Locked-Loop Characteristics Using the Quasi-Harmonic Method

  • THEORY OF RADIO CIRCUITS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract—The effect of higher harmonics on the accurate calculation of the dynamic characteristics of piecewise-linear phase-locked-loop frequency control using the quasi-harmonic method has been demonstrated at exactly known values of the lock-in range and the frequency of rotational motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. E. P. Popov, The Applied Theory of Management Processes in Nonlinear Systems (Nauka, Moscow, 1973).

    Google Scholar 

  2. Method of Harmonious Linearization in Design of Nonlinear Systems of Automatic Control, Ed. by Yu. I. Topcheev (Mashinostroenie, Moscow, 1970) in Ser.: Nonlinear Systems of Automatic Control, Ed. by E. P. Popov. [in Russian].

  3. E. L. Urman, Vestn. Elektroprom., No. 4, 54 (1957).

  4. T. Niawiadomski, Archiwum Elektrotech. 9 (42), 53 (1960).

    Google Scholar 

  5. T. J. Rey, “Automatic phase control: theory and design,” Proc. IRE 48, 1760 (1960).

  6. B. I. Shakhtarin, Quasiharmonious Method and Its Application to the Analysis of Nonlinear Phase Systems (Energoatomizdat, Moscow, 1987).

    Google Scholar 

  7. B. I. Shakhtarin, Izv. Akad. Nauk SSSR, Tekh. Kibernet., No. 5, 174 (1977).

  8. A. F. Gribov and B. I. Shakhtarin, Avtomat. i Telemekh., No. 10, 183 (1981).

  9. A. F. Gribov and B. I. Shakhtarin, Vestn. Bauman MGTU, Estest. Nauki, No. 1, 3 (2014).

    Google Scholar 

  10. A. F. Gribov and B. I. Shakhtarin, J. Commun. Technol. Electron. 58, 1070 (2013).

    Article  Google Scholar 

  11. N. A. Gubar’, Priklad. Mat. 25, 1011 (1961).

    Google Scholar 

  12. B. I. Shakhtarin, Radiotekh. Elektron. (Moscow) 14, 1315 (1969).

    Google Scholar 

  13. A. F. Gribov and A. P. Krishchenko, Radiotekh. Elektron. (Moscow) 27, 321 (1982).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 18-07-00269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Gribov.

Additional information

Translated by I. Nikishin

Rigorous Methods of Investigation of Piecewise-Linear PLL Systems

Rigorous Methods of Investigation of Piecewise-Linear PLL Systems

Let us transform Eq. (2) into a system of equations that does not contain derivatives of function \(\Phi (\varphi )\)

$$\dot {\vec {y}} = A\vec {y} + \vec {c}\Phi (\varphi ),$$
((A.1))

where \(\vec {y} = {{({{y}_{1}}, \ldots ,~{{y}_{n}})}^{T}}~\) (T is the transposition symbol),

$$\begin{gathered} ~{{y}_{1}} = \varphi ,\,\,\,\,~{{{\dot {y}}}_{i}} = {{y}_{{i + 1}}},\,\,\,\,~i = 0,~1, \ldots ,\,\,\,~n - m - 1, \\ {{{\dot {y}}}_{i}} = {{y}_{{i + 1}}} + {{c}_{i}}\Phi ({\varphi }),\,\,\,\,~~i = n - m, \ldots ,~n - 1, \\ {{c}_{{n - m}}} = - \frac{{{{b}_{m}}}}{{{{a}_{{n - 1}}}}},\,\,\,\,~~{{c}_{{n - k}}} = - \frac{{{{b}_{k}}}}{{{{a}_{{n - 1}}}}} \\ - \,\,\sum\limits_{i = n - m + k}^{n - 1} {\frac{{{{a}_{{n - m + k - i}}}}}{{{{a}_{{n - 1}}}}}} {{c}_{{i - k}}},~\,\,\,\,~k = 1,~ \ldots ,~m - 1, \\ \end{gathered} $$
((A.2))
$$\begin{gathered} \vec {c} = {{(0,~ \ldots ,~0,~{{c}_{{n - m}}},~\, \ldots ,~{{c}_{n}})}^{T}}, \\ {\mathbf{A}} = \left( {\begin{array}{*{20}{c}} 0&1&0& \ldots &0 \\ 0&0&1& \ldots &0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}&{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}& \ldots &{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}} \end{array}} \right). \\ \end{gathered} $$
((A.3))

Separatrix Loop in Piecewise-Linear Systems

Let us consider the system of differential equations (A.1) with piecewise-linear approximation (5) of function \(F(x).\) In this case, the system can be transformed into form

$$\dot {\vec {y}} = {{{\mathbf{A}}}_{i}}\vec {y} + {{s}_{i}}\vec {g},\,\,\,\,~~i = 1,~2,$$
((A.4))

where

$$\begin{gathered} {{{\mathbf{A}}}_{i}} = \left( {\begin{array}{*{20}{c}} {{{g}_{1}}{{k}_{i}}}&1&0& \ldots &0 \\ {{{g}_{2}}{{k}_{i}}}&0&1& \ldots &0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ {{{g}_{n}}{{k}_{i}}}&{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}&{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}& \ldots &{{{ - {{a}_{{n - 2}}}} \mathord{\left/ {\vphantom {{ - {{a}_{{n - 2}}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}} \end{array}} \right), \\ {{k}_{1}} = {{c}^{{ - 1}}},~\,\,\,\,{{k}_{2}} = - {{(\pi - c)}^{{ - 1}}},~\,\,\,\,{{s}_{1}} = - \beta ,\,\,\,\, \\ ~{{s}_{2}} = \pi {{(\pi - c)}^{{ - 1}}} - \beta , \\ \vec {g} = {{({{g}_{1}},~ \ldots ,~{{g}_{n}})}^{T}},~\,\,\,\,{{g}_{1}} = \ldots = {{g}_{{n - m - 1}}} = 0, \\ \end{gathered} $$

and \({{g}_{{n - j}}}\) are calculated according to (A.2), and \(j = 0,~ \ldots ,m - 1.\) The roots of the characteristic equation in regions I and II are denoted using \({{p}_{i}}\) and \(p_{i}^{'}~~\left( {i = 1,~ \ldots ,~n} \right);\)\({{\vec {f}}_{i}}\) and \(\vec {f}_{i}^{'}~\) are the eigenvectors corresponding to eigenvalues \({{p}_{i}}\) and \(p_{i}^{'}.\)

Let us assume that roots \({{p}_{i}}\) and \(p_{i}^{'}\) in regions I and II satisfy the following conditions:

$${{p}_{i}} \ne {{p}_{j}},\,\,\,\,~p_{i}^{'} \ne p_{j}^{'}~\,\,\,\,~{\text{at}}\,\,\,\,~i \ne j,\,\,\,\,\operatorname{Im} ~p_{1}^{'} = 0,$$
$${\text{Re}}~p_{1}^{'} > 0,\,\,\,\,~{\text{Re}}~p_{k}^{'} < 0,~\,\,\,\,k = 2,~ \ldots ,~n,~\,\,\,{\text{Re }}{{p}_{i}} < 0.$$

Let \({\mathbf{W}}\left( {{{p}_{1}},~ \ldots ,~{{p}_{n}}} \right)\) denote the matrix whose columns are the eigenvectors corresponding to eigenvalues \({{p}_{i}}.\) Let \({{w}_{i}} = w({{p}_{1}},~ \ldots ~,~\left. {{{p}_{n}}} \right|a)\) be the determinant from \(\det {\mathbf{W}}\left( {{{p}_{1}},~ \ldots ,~{{p}_{n}}} \right)\) by replacing the ith column with vector column a; \({{\vec {e}}_{1}} = {{(1,~0,~ \ldots ~,~0)}^{T}},~\)\(\mu = {\pi \mathord{\left/ {\vphantom {\pi {c - 1}}} \right. \kern-0em} {c - 1}}.\)

In this case, the theorem stated in [13] is valid.

Theorem.For \(a\) separatrix loop in system(A.4), which increases (decreases) periodic coordinate\({{y}_{1}} = \varphi \)by\(2\pi \), to exist, we must have\(\beta = {{\beta }_{{kc}}}~\left( {\gamma = - {{\beta }_{{kc}}}} \right),\)where

$$\begin{gathered} ~~{{\beta }_{{kc}}} \\ = \,\,{{\,\left( {w - \sum\limits_{i = 1}^n {{{\omega }_{i}}} \exp ~\left( {{{p}_{i}}\tau } \right)} \right)} \mathord{\left/ {\vphantom {{\,\left( {w - \sum\limits_{i = 1}^n {{{\omega }_{i}}} \exp ~\left( {{{p}_{i}}\tau } \right)} \right)} {\left( {w + \sum\limits_{i = 1}^n {{{\omega }_{i}}~\exp } ~\left( {{{p}_{i}}\tau } \right)} \right)}}} \right. \kern-0em} {\left( {w + \sum\limits_{i = 1}^n {{{\omega }_{i}}~\exp } ~\left( {{{p}_{i}}\tau } \right)} \right)}}, \\ \end{gathered} $$
((A.5))

and τ is the root of equation

$$\sum\limits_{i = 1}^n {{{\omega }_{i}}~{{v}_{{i1}}}\exp ~\left( {{{p}_{i}}t} \right)} = 0,$$
$${{\omega }_{i}} = \mu {{w}_{i}}\left( {{{p}_{1}},~ \ldots ,~\left. {{{p}_{n}}} \right|f_{1}^{'}} \right) - \left( {\mu + 1} \right){{w}_{i}}\left( {{{p}_{1}},~ \ldots ,~\left. {{{p}_{n}}} \right|{{e}_{1}}} \right),$$
$${{v}_{{ij}}} = {{w}_{j}}\left( {p_{1}^{'}, \ldots ,\left. {p_{n}^{'}} \right|{{f}_{i}}} \right) - \left( {\mu + 1} \right){{w}_{j}}\left( {p_{1}^{'},~ \ldots ~\left. {p_{n}^{'}} \right|{{e}_{1}}} \right),$$
$$i,~j = 1,~ \ldots ~,~n,~\,\,\,\,~w = \det {\mathbf{W}}\left( {{{p}_{1}},~ \ldots ,~{{p}_{n}}} \right).$$

Limiting φ-Cycles in Piecewise-Linear Phase Systems

In triangular approximation of the nonlinearity for phase system (A.4), for φ-cycles to exist, the following conditions must be satisfied:

((A.6))

Here \({\mathbf{P}}(\tau ) = {\mathbf{W\Lambda }}(\tau ){{{\mathbf{W}}}^{{ - 1}}},\)\({\mathbf{Q}}(\theta ) = ~{\mathbf{V\Lambda }}{{'}}(\theta ){{{\mathbf{V}}}^{{ - 1}}},~\)\({\mathbf{\Lambda }}(t) = {\text{diag }}(\exp \left( {{{p}_{1}}t} \right), \ldots ,\exp \left( {{{p}_{n}}t} \right)),\)\(~{\mathbf{\Lambda }}'(t) = {\text{diag}}~(\exp \left( {p_{1}^{'}t} \right), \ldots ,\exp \left( {p_{n}^{'}t} \right))\) are the diagonal matrices; τ, θ is the time of travel of the point over regions I and II, respectively; W and V are the matrices whose respective columns are eigenvectors \(\overrightarrow {{{f}_{i}}} \) and \(\vec {f}_{i}^{'}~\). Let us assume that is the cycle frequency. In this case, relations (A.6) make it possible to obtain the oscillation characteristic in form

The stability of the found cycle can be determined by considering the matrix of the point transformation of plane \({{y}_{1}} = - c\) into plane \({{y}_{1}} = 2\pi - c\,:\)

$${\mathbf{U}} = {\mathbf{P}}(\tau ){{{\mathbf{H}}}_{1}}{\mathbf{Q}}(\theta ){{{\mathbf{H}}}_{2}},$$
((A.7))

where

$$\begin{gathered} {{{\mathbf{H}}}_{1}} = \frac{\pi }{{c\left( {c - \pi } \right)\left( {{{g}_{1}}\left( {1 - \beta } \right) + y_{2}^{2}} \right)}} \\ \times \,\,{{(0,~{{g}_{2}}\left( {y_{2}^{2} - c} \right),~ \ldots ,~{{g}_{n}}(y_{n}^{2} - c))}^{T}}e_{1}^{T} + {\mathbf{E}}, \\ \end{gathered} $$
$$\begin{gathered} {{{\mathbf{H}}}_{2}} = \frac{\pi }{{c\left( {c - \pi } \right)\left( { - {{g}_{1}}\left( {1 + \beta } \right) + y_{2}^{1}} \right)}} \\ \times \,\,{{(0,~{{g}_{2}}\left( {2\pi - c - y_{2}^{1}} \right),~ \ldots ,~{{g}_{n}}(2\pi - c - y_{n}^{1}))}^{T}}e_{1}^{T} + {\mathbf{E}}. \\ \end{gathered} $$

Here \(\beta ,~y_{2}^{1},~ \ldots ,~y_{n}^{1}\) are found from (A.6) and \(y_{2}^{2},~ \ldots ,~y_{n}^{2}\) are determined using

$${{(c - \beta c,~y_{2}^{2}, \ldots ,~y_{n}^{2})}^{T}} = {\mathbf{W}}~{\mathbf{\Lambda }}(\tau ){{W}^{{ - 1}}}{{( - c - {\beta }c,~y_{2}^{1},~ \ldots ,~y_{n}^{1})}^{T}}~.$$

One of the roots of characteristic equation \(\det ({\mathbf{U}} - \lambda {\mathbf{E}}) = 0\) is unity. If the other roots are within the unit circle, the point transformation is stable and, accordingly, the periodical mode under consideration is orbitally stable and nonasymptotically stable in the sense of Lyapunov.

In the saw-tooth approximation of nonlinearity, system (A.1) takes form

$$\dot {y} = {\mathbf{A}}y - \beta \vec {g},~$$
((A.8))

where

$${\mathbf{A}} = \left( {\begin{array}{*{20}{c}} {{{{{g}_{1}}} \mathord{\left/ {\vphantom {{{{g}_{1}}} \pi }} \right. \kern-0em} \pi }}&1&0& \ldots &0 \\ {{{{{g}_{2}}} \mathord{\left/ {\vphantom {{{{g}_{2}}} \pi }} \right. \kern-0em} \pi }}&0&1& \ldots &0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ {{{{{g}_{n}}} \mathord{\left/ {\vphantom {{{{g}_{n}}} \pi }} \right. \kern-0em} \pi }}&{{{ - {{a}_{0}}} \mathord{\left/ {\vphantom {{ - {{a}_{0}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}&{{{ - {{a}_{1}}} \mathord{\left/ {\vphantom {{ - {{a}_{1}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}}& \ldots &{{{ - {{a}_{{n - 2}}}} \mathord{\left/ {\vphantom {{ - {{a}_{{n - 2}}}} {{{a}_{{n - 1}}}}}} \right. \kern-0em} {{{a}_{{n - 1}}}}}} \end{array}} \right).$$

Similar to the previous case, on the assumption that \({\mathbf{Q}}(\theta ) = {\mathbf{W\Lambda }}(\theta ){{{\mathbf{W}}}^{{ - 1}}}\) and (the cycle frequency), the characteristic of oscillation can be found in form

((A.9))

where \(\overline {{{a}_{{11}}}} = {{a}_{{11}}} + 2\) and \({{a}_{{ij}}}\) are the elements of matrix \({\mathbf{Q}} - {\mathbf{E}}.\)

The matrix of the point transformation has form

$${\mathbf{U}} = {\mathbf{Q}}(\theta ){\mathbf{H}},$$

where

$${\mathbf{H}} = - \frac{2}{{{{g}_{1}}\left( {1 - \beta } \right) + y_{2}^{1}}}\vec {g}e_{1}^{T} + {\mathbf{E}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribov, A.F., Shakhtarin, B.I. Effect of Higher Harmonics on the Accurate Calculation of Dynamic Phase-Locked-Loop Characteristics Using the Quasi-Harmonic Method. J. Commun. Technol. Electron. 64, 484–491 (2019). https://doi.org/10.1134/S106422691905005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691905005X

Navigation