Skip to main content
Log in

Near-Infrared Luminescence of Bismuth in Silica-Based Glasses with Different Additives

  • PHYSICAL PROCESSES IN ELECTRON DEVICES
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The near-infrared (NIR) luminescence spectra and changes caused in them by an exposure to ArF excimer laser radiation were studied in bismuth-doped silica-based glasses containing Al, P or Ge and B additives. Experiments were conducted using specimens in the form of optical waveguides synthesized by surface plasma chemical vapor deposition (SPCVD), using bismuth-doped glass sample as the light-guiding core. Excited by ~808, ~904, and ~970 nm wavelength laser diodes, the NIR luminescence spectra were recorded in the 700–2000 nm wavelength range at temperatures of 105 and 300 K. The UV laser treatment was found to cause changes in both integrated intensity and spectrum shape of NIR luminescence associated with bismuth impurities. The observed changes are discussed with the assumption of photo-induced reconfiguring of different bismuth inclusions, which might present in the glass network in the form of separate ions and atoms, interstitial molecules, and bulk semiconductor nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. B 40 (3), L279–L281 (2001).

    Article  Google Scholar 

  2. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.: Condens. Matter. 21, 285106–285106-6 (2009).

    Google Scholar 

  3. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).

    Article  Google Scholar 

  4. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband in frared luminescence,” Opt. Mater. 29, 556–561 (2007).

    Article  Google Scholar 

  5. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).

    Article  Google Scholar 

  6. H. Sun, T. Yonezawa, M. M. Gillett-Kunnath, Y. Sakka, N. Shirahata, S. C. R. Gui, M. Fujii, and S. C. Sevov, “Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2– dimers,” J. Mater. Chem. 22, 20 175–20 178 (2012).

    Article  Google Scholar 

  7. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).

    Article  Google Scholar 

  8. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalentmonocation Bi+ and cluster \({\text{Bi}}_{5}^{{3 + }}\) luminescence in AlCl3/ZnCl2/BiCl3 chloride glass,” Opt. Express 20, 7212–7220 (2012).

    Article  Google Scholar 

  9. M. A. Hughes, R. M. Gwilliam, K. Homewood, B. Gholipour, D. W. Hewak, T. Lee, S. R. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. J. Curry, “On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses,” Opt. Express 21, 8101–8115 (2013).

    Article  Google Scholar 

  10. R. Kelting, A. Baldes, U. Schwarz, T. Rapps, D. Schooss, P. Weis, C. Neiss, F. Weigend, and M. M. Kappes, “Structures of small bismuth cluster cations,” J. Chem. Phys. 136, 154309–154309-10 (2012).

    Article  Google Scholar 

  11. H. K. Yuan, H. Chen, A. L. Kuang, Y. Miao, and Z. H. Xiong, “Density-functional study of small neutral and cationic bismuth clusters Bin and \({\text{Bi}}_{n}^{ + }\) (n = 2–24),” J. Chem. Phys. 128, 094305–094305-10 (2008).

    Article  Google Scholar 

  12. R. K. Verma, K. Kumar, and S. B. Rai, “Near infrared induced optical heating in laser ablated Bi quantum dots,” J. Colloid Interface Sci. 390, 11–16 (2013).

    Article  Google Scholar 

  13. R. Butkutė, G. Niaura, E. Pozingytė, B. Čechavičius, A. Selskis, M. Skapas, V. Karpus, and A. Krotkus, “Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells,” Nanoscale Res. Lett. 12, 1–7 (2017).

    Article  Google Scholar 

  14. R. Butkutė, K. Stašys, V. Pačebutas, B. Čechavičius, R. Kondrotas, A. Geižutis, and A. Krotkus, “Bismuth quantum dots and strong infrared photoluminescence in migration-enhanced epitaxy grown GaAsBi-based structures,” Opt. Quantum Electron. 47, 873–882 (2015).

    Article  Google Scholar 

  15. D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. Ruiz-Ruiz, S. Castillo-Blum, and L. Rendon, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116, 14717–14727 (2012).

    Article  Google Scholar 

  16. A. J. Levin, M. R. Black, and M. S. Dresselhaus, “Indirect L to T point optical transition in bismuth nano-wires,” Phys. Rev. B: Condens. Matter. 79, 165117-1–165117-10 (2009).

    Google Scholar 

  17. Ph. Hofmann, “The surfaces of bismuth: Structural and electronic properties,” Prog. Surf. Sci. 81(5), 191–245 (2006).

    Article  Google Scholar 

  18. A. P. Bazakutsa and K. M. Golant, “Near-infrared luminescence of bismuth in fluorine-doped-core silica fibres,” Opt. Express 23, 3818–3830 (2015).

    Article  Google Scholar 

  19. A. P. Bazakutsa, O. V. Butov, E. A. Savel’ev, and K. M. Golant, “Specific features of IR photoluminescence of bismuth-doped silicon dioxide synthesized by plasmachemical method,” J. Commun. Technol. Electron. 57, 743–750 (2012).

    Article  Google Scholar 

  20. Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, and S. Y. Tong, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79, 1810–1812 (2001).

    Article  Google Scholar 

  21. P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “‘Blue’ temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71, 569–571 (1998).

    Article  Google Scholar 

  22. Q. Li, S. J. Xu, M. H. Xie, and S. Y. Tong, “Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors,” J. Phys.: Condens. Matter. 17 (30), 4853–4858 (2005).

    Google Scholar 

  23. T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4, 1–7 (2014).

    Google Scholar 

  24. P. Dey, J. Paul, J. Bylsma, D. Karaiskaj, J. M. Luther, M. C. Beard, and A. H. Romero, “Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots,” Solid State Commun. 165, 49–54 (2013).

    Article  Google Scholar 

  25. H. Hosono, H. Kawazoe, and J. Nishii, “Defect formation in SiO2:GeO2 glasses studied by irradiation with excimer laser light,” Phys. Rev. B: Condens. Matter 53 (18), R11921–R11923 (1996).

    Article  Google Scholar 

  26. M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings,” Phys. Rev. B: Condens. Matter. 57, 3920–3926 (1998).

    Article  Google Scholar 

  27. A. N. Trukhin, J. Teteris, A. Fedotov, D. L. Griscom, and G. Buscarino, “Photosensitivity of SiO2–Al and SiO2–Na glasses under ArF (193 nm) laser,” J. Non-Cryst. Solids 355(18-21), 1066–1074 (2009).

    Article  Google Scholar 

  28. K. M. Golant, “Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review),” in Presented at the XXI Int. Congress on Glass, Strasbourg, France, July 16, 2007.

  29. P. McMillan, “Structural studies of silicate glasses and melts - applications and limitations of Raman spectroscopy,” Am. Mineral. 69 (6-8), 622–644 (1984).

    Google Scholar 

  30. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study,” Opt. Mater. Express 3, 1059–1074 (2013).

    Article  Google Scholar 

  31. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149 77–95 (1992).

    Article  Google Scholar 

  32. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass, Quantum Electron. 41, 1080–1082 (2011).

    Article  Google Scholar 

  33. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D: Appl. Phys. 42, 095410-1–095410-7 (2009).

    Google Scholar 

  34. H. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from \({\text{Bi}}_{8}^{{2 + }}\) and \({\text{Bi}}_{5}^{{3 + }}\) stabilized by [AlCl4] in molecular crystals,” J. Mater. Chem. 22 (25), 12837–12841 (2012).

    Article  Google Scholar 

  35. C. T. Huang and R. Y. Lin, “Thermodynamics of the Na2O–P2O5 system,” Metall. Mater. Trans. B 20, 197–204 (1989).

    Article  Google Scholar 

  36. E. L. Kozhina, and M. M. Shultz, “Thermodynamic properties of sodium-containing glassforming oxide melts,” Ceram. Silik. 44 (3), 91–97 (2000).

    Google Scholar 

  37. H. Sun, Y. Sakka, N. Shirahata, Y. Matsushita, K. Deguchi, and T. Shimizu, “NMR, ESR, and luminescence characterization of bismuth embedded zeolites Y,” J. Phys. Chem. C 117, 6399–6408 (2013).

    Article  Google Scholar 

  38. V. V. Tugushev and K. M. Golant, “Excited oxygen-deficient center in silicon dioxide as structurally non-rigid, mixed-valence complex,” J. Non-Cryst. Solids 241, 166–173 (1998).

    Article  Google Scholar 

  39. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from \({\text{Bi}}_{5}^{{3 + }}\) in Bi5(AlCl4)3,” Opt. Express 20, 2562–2571 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Basic Research Foundation (project no. 16-07-00371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Savelyev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyev, E.A., Butov, O.V., Yapaskurt, V.O. et al. Near-Infrared Luminescence of Bismuth in Silica-Based Glasses with Different Additives. J. Commun. Technol. Electron. 63, 1458–1468 (2018). https://doi.org/10.1134/S1064226918120203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918120203

Keywords:

Navigation