Skip to main content
Log in

Memristive Properties of Structures Based on (Co41Fe39B20) x (LiNbO3)100–x Nanocomposites

  • Physical Processes in Electron Devices
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The current‒voltage characteristics of the metal/nanocomposite (NC)/metal structures based on (Co41Fe39B20) x (LiNbO3)100–x NCs 2.4 and 3 μm thick are investigated in the fields of up to ~104 V/cm. The structures are synthesized via ion-beam sputtering of a composite target, in which NCs of different composition are formed in the single cycle at x = 5‒48 at %. The memristive effect (ME) manifesting itself during resistive switching of structures and the storage of incipient states has been detected at x ≈ 10 at %. It is ascertained that the ME depends weakly on used metal (Cu or Cr) contacts and the NC layer thickness, the number of switching cycles (without degradation) exceeds 105, and the ratio between the resistances of high- and low-resistance states, i.e., the Roff/Ron ratio, reaches approximately 65. The detected ME is explained by the fact that oxygen vacancies substantially affect the tunneling conductance of metal-granule chains determining the electric resistance of structures below the percolation threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Ha and S. Ramanathan, J. Appl. Phys. 110, 071101 (2011).

    Article  Google Scholar 

  2. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, et al., Nature 521, 61 (2015).

    Article  Google Scholar 

  3. A. Serb, J. Bill, A. Khiat, et al., Nat. Commun. 7, 12611 (2016).

    Article  Google Scholar 

  4. V. A. Demin, V. V. Erokhin, A. V. Emelyanov, et al., Organic Electron. 25, 16 (2015).

    Article  Google Scholar 

  5. A. V. Emelyanov, D. A. Lapkin, V. A. Demin, et al., AIP Adv. 6, 111301 (2016).

    Article  Google Scholar 

  6. J. Schemmel, A. Grübl, K. Meier, and E. Mueller, in Proc. Int. Joint Conf. Neural Netw, Vancouver, BC, Canada, July 16‒21, 2006 (IEEE, New York, 2006).

    Google Scholar 

  7. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).

    Article  Google Scholar 

  8. Y. H. Do, J. S. Kwak, and Y. C. Bae, Thin Solid Films 518, 4408 (2010).

    Article  Google Scholar 

  9. Y. H. Do, J. S. Kwak, and Y. C. Bae, Current Appl. Phys. 10, 71 (2010).

    Article  Google Scholar 

  10. Yu. V. Khrapovitskaya, N. E. Maslova, Yu. V. Grishchenko, V. A. Demin, and M. L. Zanaveskin, JETP Lett. 40, 317 (2014).

    Google Scholar 

  11. A. V. Emel’yanov, V. A. Demin, I. M. Antropov, G. I. Tselikov, Z. V. Lavrukhina, and P. K. Kashkarov, Tech. Phys. 60, 112 (2015).

    Article  Google Scholar 

  12. S. Chen and J. Wu, Thin Solid Films 519, 499 (2010).

    Article  Google Scholar 

  13. Y. Shuai, S. Zhou, D. Bürger, et al., J. Appl. Phys. 109, 124117 (2011).

    Article  Google Scholar 

  14. T. You, N. Du, S. Slesazeck, et al., ACS Appl. Mater. Interfaces 6, 19758 (2014).

    Article  Google Scholar 

  15. X. Pan, Y. Shuai, C. Wu, et al., Appl. Phys. Lett. 108, 032904 (2016).

    Article  Google Scholar 

  16. J. J. Yang, D. B. Strukov, and D. R. Stewart, Nature Nanotechnol. 8, 13 (2013).

    Article  Google Scholar 

  17. J. S. Lee, S. Lee, and T. W. Noh, Appl. Phys. Rev. 2, 031303 (2015).

    Article  Google Scholar 

  18. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  Google Scholar 

  19. Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Phys. Solid State 46, 2146 (2004).

    Article  Google Scholar 

  20. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Nonlinear Phenomena in Nano-and Microheterogeneous Systems (BINOM, Laboratoriya Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  21. L. V. Gurvich, G. V. Karachentzev, V. N. Kondratiev, et al., Rupture Energies of Chemical Bonds, Ionizing Potentials, and Electron Affinities (Nauka, Moscow, 1974), p. 351 [in Russian].

    Google Scholar 

  22. B. A. Aronzon, D. A. Bakaushin, A. S. Vedeneev, et al., Zh. Eksp. Teor. Fiz. 66, 633 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ryl’kov.

Additional information

Original Russian Text © V.A. Levanov, A.V. Emel’yanov, V.A. Demin, K.E. Nikirui, A.V. Sitnikov, S.N. Nikolaev, A.S. Vedeneev, Yu.E. Kalinin, V.V. Ryl’kov, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 5, pp. 487–492.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, V.A., Emel’yanov, A.V., Demin, V.A. et al. Memristive Properties of Structures Based on (Co41Fe39B20) x (LiNbO3)100–x Nanocomposites. J. Commun. Technol. Electron. 63, 491–496 (2018). https://doi.org/10.1134/S1064226918050078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918050078

Navigation