Skip to main content
Log in

Physical implementation of elements with fractal impedance: State of the art and prospects

  • Review
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

In this review, we consider elements with a fractal impedance (henceforward, fractal elements, FEs). Advantages and drawbacks of various engineering and technological implementations of FEs are estimated. It is shown that promising FEs appropriate for production and solution of a wide range of scientific and engineering problems are structures on the basis of resistance-capacitance distributed parameter components (RC-DPCs) with the R–C–NR layer structure. It is established that RC-DPC FEs make it possible to implement fractal impedances with complex fractional-power frequency dependence. Examples of physical implementation of RC-DPC FEs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. B. Mandelbrot, Les Objects Fractals: Forme, Hasard et Dimension (Flammarion, Paris, 1975).

    MATH  Google Scholar 

  2. B. B. Mandelbrot, The Fractals Geometry of Nature (Freeman, New York, 1982).

    MATH  Google Scholar 

  3. Ya. B. Zel’dovich and D. D. Sokolov, Usp. Fiz. Nauk 146, 493 (1985).

    Article  Google Scholar 

  4. R. L. Bagley and P. Torvik, J. Appl. Mech. 51, 294 (1984).

    Article  Google Scholar 

  5. Z. B. Stoinov, B. M. Grafov, B. Savova-Stoinova, and V. V. Elkin, Electrochemical Impedance (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  6. A. A. Potapov, Fractals in Radiophysics and Radar: Topology of a Sample (Universitetskaya Kniga, Moscow, 2005) [in Russian].

    Google Scholar 

  7. L. Debnath, Int. J. Math. Math. Sci. 54, 3413 (2003).

    Article  Google Scholar 

  8. V. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ul’yanovsk, 2008).

    Google Scholar 

  9. New Trends in Nanotechnology and Fractional Calculus Applications, Ed. by D. Baleanu, Z. B. Guvenc, and J. A. Tenreiro Machado (Springer, New York, 2010).

  10. K. B. Oldham and J. Spanier, The Fractional Calculus (Academic, New York, 1974).

    MATH  Google Scholar 

  11. I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999).

    MATH  Google Scholar 

  12. I. M. Tetel’baum and Yu. R. Shneider, Practice of Analog Modeling of Dynamic Systems: Handbook (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  13. A. A. Potapov, A. Kh. Gil’mutdinov, and P. A. Ushakov, Fractal Radioelements and Radio Systems: Physical Aspects, Ed. by A. A. Potapov (Radiotekhnika, Moscow, 2009) [in Russian].

    Google Scholar 

  14. Fractals in Physics, Ed. by L. Pietronero and E. Tosatti (North Holland, Amsterdam, 1986; Mir, Moscow, 1988).

  15. R. Sh. Nigmatullin, in Proc. 2nd All-Union Conf. on Polarography (Kazan. Univ., Kazan, 1962), p. 98 [in Russian].

    Google Scholar 

  16. Fractals and Fractional Operators, Ed. by A. Kh.Gil’mutdinov (FEN, Kazan, 2010) [in Russian].

  17. A. I. Miroshnikov, Fractional differentiation and compensation of volume resistance in an oscillographic polarography, Extended Abstract Cand. Sci. (Eng.) Dissertation (Kazan. Gos. Univ., Kazan, 1963) [in Russian].

    Google Scholar 

  18. F. A. Karamov, R. Sh. Nigmatullin, E. A. Ukshe, and L. M. Urmancheev, Elektrokhimiya 17, 1496 (1982) [in Russian].

    Google Scholar 

  19. G. W. Bohannan, J. Vibration Control 14, 1487 (2008).

    Article  MathSciNet  Google Scholar 

  20. R. Morrison, IEEE Trans. Commun. Technol. 6, 310 (1959).

    Google Scholar 

  21. S. Manabe, ETJ Japan 6 (3–4), 83 (1961).

    Google Scholar 

  22. I. Petraš, I. Podlubny, P. O’Leary, et al., Analogue Realization of Fractional Order Controllers (Fakulta BERG TU Košice, Košice, 2002).

    MATH  Google Scholar 

  23. A. Charef, IEE Proc. Control Theory Appl. 153, 714 (2006).

    Article  Google Scholar 

  24. A. Oustaloup, O. Cois, P. Lanusse, et al., in Proc. 2nd IFAC Workshop on Fractional Differentiation and Its Applications (Porto, Portugal, July 19–21, 2006) (Univ. Porto, Porto, 2006), p. 675.

    Google Scholar 

  25. E. I. Saakov, Theory and Calculation of Selective RC Systems (Gosenergoizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  26. C. K. Hager, Electronics, No. 4, 44 (1959).

    Google Scholar 

  27. H. Kaiser, P. Castro, and A. Nichols, in S/A Research and Development Handbook (1962), p. E17.

    Google Scholar 

  28. A. Kh. Gil’mutdinov, The Resistance-Capacitance Elements with Distributed Parameters: Analysis, Synthesis, and Application (Kazan. Gos. Tekhn. Univ., Kazan, 2005) [in Russian].

    Google Scholar 

  29. A. Kh. Gil’mutdinov, A. A. Potapov, and P. A. Ushakov, Nelin. Mir (6), 183 (2008) [in Russian].

    Google Scholar 

  30. A. Kh. Gil’mutdinov, A. A. Potapov, and P. A. Ushakov, in Radiolocation, Navigation, and Communications: RLNC-2008 (Proc. XIV Int. Sci. Eng. Conf., Voronezh, Russia, Apr. 15–17, 2008) (NPF Sakvoee, Voronezh, 2008), Vol. 3, p. 1930.

    Google Scholar 

  31. A. A. Potapov, A. Kh. Gil’mutdinov, and P. A. Ushakov, J. Commun. Technol. Electron. 53, 977 (2008).

    Article  Google Scholar 

  32. A. A. Potapov, A. Kh. Gil’mutdinov, and P. A. Ushakov, J. Commun. Technol. Electron. 53, 1271 (2008).

    Article  Google Scholar 

  33. A. Kh. Gil’mutdinov and P. A. Ushakov, Fractal Elements: Manual, Ed. by A. Kh. Gil’mutdinov (Kazan. Gos. Tekhn. Univ., Kazan, 2013) [in Russian].

    Google Scholar 

  34. A. Kh. Gil’mutdinov, in Proc. 31th Sci.-Techn. Conf., Ul’yanovsk, Jan. 12–14 1997 Ulyanovsk. Gos. Techn. Univ., Ulyanovsk, 1997), Pt. 1, p. 74 [in Russian].

    Google Scholar 

  35. A. Kh. Gil’mutdinov and A. A. Goppe, in Proc. Sci.- Tech. Conf. Kazan. Aviation Instit., Kazan, Apr. 4–15, 1994 (Kazan. Aviation Instit., Kazan, 1994), p. 218 [in Russian].

    Google Scholar 

  36. A. Kh. Gil’mutdinov, Vestn. KGTU im. A.N. Tupoleva, No. 1, 32 (1997) [in Russian].

    Google Scholar 

  37. T. Cisse Haba, Ablart G., and T. Camps, IEEE Trans. Dielectr. Electr. Insul. 4, 321 (1997).

    Article  Google Scholar 

  38. L. E. Degtyar’, L. M. Zafrina, and I. S. Tsimmerman, Microwire in Instrument Engineering (Kartya Moldovenyaske, Kishenev, 1974), p. 26.

    Google Scholar 

  39. A. Kh. Gil’mutdinov and P. A. Ushakov, Tr. Kazan. Nauch. Semin. KGTU, No. 3, 233 (2007) [in Russian].

    Google Scholar 

  40. A. Kh. Gil’mutdinov and P. A. Ushakov, Tr. Kazan. Nauch. Semin. KGTU, No. 3, 253 (2007) [in Russian].

    Google Scholar 

  41. A. Kh. Gil’mutdinov, V. A. Ivantsov, and P. A. Ushakov, Vestn. KGTU im. A.N. Tupoleva No. 1, 75 (2007) [in Russian].

    Google Scholar 

  42. A. Kh. Gil’mutdinov, V. A. Moklyakov, and P. A. Ushakov, Nelin. Mir 5, 633 (2007) [in Russian].

    Google Scholar 

  43. P. A. Ushakov, Methods of the analysis and synthesis of multilayered non-uniform RC elements with distributed parameters and devices on their basis, Extended Abstract of Doctoral (Eng.) Dissertation (Gos. Tekh. Univ., Izhevsk, 2009) [in Russian].

    Google Scholar 

  44. A. Kh. Gil’mutdinov, N. V. Poryvaev, and P. A. Ushakov, Nelin. Mir 9, 740 (2011) [in Russian].

    Google Scholar 

  45. S. V. Karpov, V. S. Gerasimov, I. L. Isaev, and A. V. Obushchenko, Kolloid. Zh. 68, 484 (2006) [in Russian].

    Google Scholar 

  46. G. W. Bohannan, S. K. Hurst, and L. Spangler, “Electrical Component with Fractional Order Impedance,” US Patent, No. 2006/0267595 Al. (Nov. 30, 2006).

    Google Scholar 

  47. A. Kh. Gil’mutdinov, P. A. Ushakov, and M. M. Gil’metdinov, Nelin. Mir 6, 452 (2008) [in Russian].

    Google Scholar 

  48. A. Kh. Gil’mutdinov, P. A. Ushakov, Nelin. Mir 6, 114 (2008) [in Russian].

    Google Scholar 

  49. A. A. Gil’mutdinov, V. A. Moklyakov, and P. A. Ushakov, Fractals and Fractional Operators, Ed. by A. Kh. Gil’mutdinov (FEN, Kazan, 2010), p. 131 [in Russian].

    Google Scholar 

  50. P. A. Ushakov, K. O. Maksimov, and Yu. V. Merzlyakov, in Element Base of Domestic Radio Electronics, (Proc. 1st Russ.-Belaruss. Sci.-Techn. Conf., Devoted to the 110 Anniversary since the Birth of O. V. Losev, N. Novgorod, Sept. 11‒14, 2013) (Nizhegorod. Radiolab., N. Novgorod, 2013), Vol. 1, p. 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kh. Gil’mutdinov.

Additional information

Original Russian Text © A.Kh. Gil’mutdinov, P.A. Ushakov, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 5, pp. 413–426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil’mutdinov, A.K., Ushakov, P.A. Physical implementation of elements with fractal impedance: State of the art and prospects. J. Commun. Technol. Electron. 62, 441–453 (2017). https://doi.org/10.1134/S1064226917050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917050060

Navigation