Skip to main content
Log in

Investigation of Erythrocyte Transport through Microchannels After the Induction of Oxidative Stress with Tert-Butyl Peroxide

  • NANODIAGNOSTICS AND PROBE TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

To characterize the effect of oxidative stress (OS) on the ability of erythrocytes to pass through microvessels and capillaries, we studied the dynamics of the movement of human erythrocytes in vitro, in the channels of a microfluidic device, under the action of an OS inducer, tert-butyl hydroperoxide (tBH), and compared it with a cytological assessment of the transformation of cell membranes. OS induced the impairment of the control over the shape and volume of cells, the decrease in passage speed, and the occlusions of microchannels. The developed microfluidic device provided an assessment of the microreology of erythrocytes under the action of hydroperoxide. In the future, it is possible to use microfluidic analysis of erythrocytes in patients to assess the effect of xenobiotics on microrheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Huisjes. , A. Bogdanova, W. van Solinge, R. M. Schiffelers, L. Kaestner, and R. van Wijk, Front. Physiol. 9, 656 (2018). https://doi.org/10.3389/fphys.2018.00656

    Article  Google Scholar 

  2. N. Mohandas and P. G. Gallagher, Blood 112, 3939 (2008).

    Article  Google Scholar 

  3. S. Svetina, Cell. Mol. Biol. Lett. 17, 171 (2012). https://doi.org/10.2478/s11658-012-0001-z

    Article  Google Scholar 

  4. T. Franco, H. Chu, and P. S. Low, Biochem. J. 473, 3147 (2016). https://doi.org/10.1042/BCJ20160328

    Article  Google Scholar 

  5. Y. Takakuwa, Curr. Opin. Hematol. 8 (2), 80 (2001).

    Article  Google Scholar 

  6. N. Arashiki, N. Kimata, S. Manno, N. Mohandas, and Y. Takakuwa, Biochemistry 52, 5760 (2013). https://doi.org/10.1021/bi400405p

    Article  Google Scholar 

  7. I. V. Pivkin, Zh. Peng, G. E. Karniadakis, P. A. Buffet, M. Dao, and Subra Suresh, Proc. Natl. Acad. Sci. U.S.A. 113, 7804 (2016). https://doi.org/10.1073/pnas.1606751113

    Article  ADS  Google Scholar 

  8. G. Tomaiuolo, Biomicrofluidics 8, 051501 (2014). https://doi.org/10.1063/1.4895755

    Article  Google Scholar 

  9. S. Losserand, G. Coupier, and T. Podgorski, Microvasc. Res. 124, 30 (2019). https://doi.org/10.1016/j.mvr.2019.02.003

    Article  Google Scholar 

  10. G. Barshtein, R. Ben-Ami, and S. Yedgar, Expert Rev. Cardiovasc. Ther. 5, 743 (2007).

    Article  Google Scholar 

  11. E. Nagababu, J. G. Mohanty, J. S. Friedman, and J. M. Rifkind, Free Radical Res. 47, 164 (2013). https://doi.org/10.3109/10715762.2012.756138

    Article  Google Scholar 

  12. I. V. Mindukshev, Yu. S. Sudnitsyna, E. A. Skverchinskaya, A. Yu. Andreeva, I. A. Dobrylko, E. Yu. Senchenkova, A. I. Krivchenko, and S. P. Gambaryan, Biochem. (Moscow) Suppl. Ser. A 13, 352 (2019). https://doi.org/10.1134/S1990747819040081

    Article  Google Scholar 

  13. A. V. Domanski, E. A. Lapshina, and I. B. Zavodnik, Biochemistry (Moscow) 70, 761 (2005). https://doi.org/10.1007/s10541-005-0181-5

    Article  Google Scholar 

  14. L. V. Boas, V. Faustino, R. Lima, J. M. Miranda, G. Minas, C. Fernandes, and S. O. Catarino, Micromachines (Basel) 9, 384 (2018). https://doi.org/10.3390/mi9080384

    Article  Google Scholar 

  15. H. W. Hou, A. A. Bhagat, A. G. Chong, P. Mao, K. S. Tan, J. Han, and C. T. Lim, Lab Chip 10, 2605 (2010). https://doi.org/10.1039/C003873C

    Article  Google Scholar 

  16. J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. S. Huck, and G. J. C. G. Bosman, BioMed. Res. Int. 2014, 764268 (2014). https://doi.org/10.1155/2014/764268

  17. W. Chien, Z. Zhang, G. Gompper, and D. A. Fedosov, Biomicrofluidics 13, 044106 (2019). https://doi.org/10.1063/1.5112033.eCollection

  18. A. S. Bukatin, I. S. Mukhin, E. I. Malyshev, I. V. Kukhtevich, A. A. Evstrapov, and M. V. Dubina, Tech. Phys. 61 (10), 1566 (2016). https://doi.org/10.1134/S106378421610008X

    Article  Google Scholar 

  19. Chia-Hung Dylan Tsai, Shinya Sakuma, Fumihito Arai, Tatsunori Taniguchi, Tomohito Ohtani, Yasushi Sakatac, and Makoto Kanekoa, RSC Adv. 4, 45050 (2014). https://doi.org/10.1039/C4RA08276A

    Article  Google Scholar 

  20. I. Gurov, M. Volkov, N. Margaryants, A. Pimenov, and A. Potemkin, Opt. Lasers Eng. 104, 244 (2018). https://doi.org/10.1016/j.optlasering.2017.09.003

    Article  Google Scholar 

  21. S. Huang, H. W. Hou, T. Kanias, J. T. Sertorio, H. Chen, D. Sinchar, M. T. Gladwin, and J. Han, Lab Chip 15, 448 (2015).

    Article  Google Scholar 

  22. J. H. Jeong, Y. Sugii, M. Minamiyama, and K. Okamoto, Microvasc. Res. 71, 212 (2006).

    Article  Google Scholar 

  23. E. Pretorius and D. B. Kell, Integr. Biol. 6, 486 (2014). https://doi.org/10.1039/c4ib00025k

    Article  Google Scholar 

  24. E. M. Welbourn, M. T. Wilson, A. Yusof, M. V. Metodiev, and C. E. Cooper, Free Radical Biol. Med. 103, 95 (2017). https://doi.org/10.1016/j.freeradbiomed.2016.12.024

    Article  Google Scholar 

  25. H. Chu, M. M. McKenna, N. A. Krump, S. Zheng, L. Mendelsohn, S. L. Thein, L. J. Garrett, D. M. Bodine, and P. S. Low, Blood 128, 2708 (2016). https://doi.org/10.1182/blood-2016-01-692079

    Article  Google Scholar 

  26. J. M. Kwan, Q. Guo, D. L. Kyluik-Price, H. Ma, and M. D. Scott, Am. J. Hematol. 88, 682 (2013). https://doi.org/10.1002/ajh.23476

    Article  Google Scholar 

  27. A. Sinha, T. T. T. Chu, M. Dao, and R. Chandramohanadas, Sci. Rep. 5, 9768 (2015). https://doi.org/10.1038/srep09768

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-34-70111 “Stability.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bukatin.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed in a study of human beings comply with ethical standards. Blood samples were obtained from healthy volunteers after obtaining written consent. The study followed the principles of the Helsinki Declaration (according to the 64th WMA General Assembly, Brazil, 2013) and was approved by the Ethics Committee of the Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences (protocol no. 15 of November 21, 2017).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skverchinskaya, E.A., Tapinova, O.D., Filatov, N.A. et al. Investigation of Erythrocyte Transport through Microchannels After the Induction of Oxidative Stress with Tert-Butyl Peroxide. Tech. Phys. 65, 1491–1496 (2020). https://doi.org/10.1134/S1063784220090236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090236

Navigation