Skip to main content
Log in

Formation of Polyacrylamide and PEGDA Hydrogel Particles in a Microfluidic Flow Focusing Droplet Generator

  • DEVELOPMENT OF PROCESS TECHNOLOGIES, DIAGNOSTIC METHODS, AND FUNCTIONAL MATERIALS AND STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Monodisperse polymeric particles have great potential in biomedical and physical applications. Modern high-throughput droplet microfluidic technologies make it possible to produce monodisperse water-in-oil macroemulsions with desired properties. Polymerization in a macroemulsion transforms it to a suspension of microparticles. These particles may be viewed as containers for targeted delivery of drugs and also as bioink for 3D printing of tissues and organs. Conditions for formation of PEGDA and polyacrylamide particles using a microfluidic flow-focusing emulsion generator have been studied. Manufactured microparticles have been characterized by their geometrical sizes and mechanical properties. In addition, the diffusion escape of small molecules from microparticles has been studied using Rhodamine B fluorescent dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Choi, K. D. Seo, D. W. Kim, B. C. Kim, and D. S. Kim, Lab Chip 17, 591 (2017). doi 10.1039/C6LC01023G

    Article  Google Scholar 

  2. L. Mazutis, R. Vasiliauskas, and D. A. Weitz, Macromol. Biosci. 15, 1641 (2015). doi 10.1002/mabi.201570046

    Article  Google Scholar 

  3. R. Zilionis, J. Nainys, A. Veres, V. Savova, D. Zemmour, A. M. Klein, and L. Mazutis, Nat. Protoc. 12, 44 (2017). doi 10.1038/nprot.2016.154

    Article  Google Scholar 

  4. H. Hwang, S.-H. Kim, and S.-M. Yang, Lab. Chip 11, 87 (2011). doi 10.1039/C0LC00125B

    Article  Google Scholar 

  5. R. K. Gao, Z. Y. Cheng, A. J. Demello, and J. Choo, Lab. Chip 16, 1022 (2016). doi 10.1039/C5LC01249J

    Article  Google Scholar 

  6. Z. Zhu, W. Zhang, X. Leng, M. Zhang, Z. Guan, J. Lu, and C. J. Yang, Lab. Chip 12, 3907 (2012). doi 10.1039/C2LC40461C

    Article  Google Scholar 

  7. W. Jiang, M. Li, Z. Chen, and K. W. Leong, Lab. Chip 16, 4482 (2016). doi 10.1039/c6lc01193d

    Article  Google Scholar 

  8. N. Shembekar, C. Chaipan, R. Utharalaa, and C. A. Merten, Lab. Chip 16, 1314 (2016). doi 10.1039/C6LC00249H

    Article  Google Scholar 

  9. J. F. Huggett, S. Cowen, and C. A. Foy, Clin. Chem. 61, 79 (2015). doi 10.1373/clinchem.2014.221366

    Article  Google Scholar 

  10. J. H. Kim, T. Y. Jeon, T. M. Choi, T. S. Shim, S.-H. Kim, and S.-M. Yang, Langmuir 30, 1473 (2014). doi 10.1021/la403220p

    Article  Google Scholar 

  11. S.-S. Liu, C.-F. Wang, X.-Q. Wang, J. Zhang, Y. Tian, S.-N. Yin, and S. Chen, J. Mater. Chem. C 2, 9431 (2014). doi 10.1039/C4TC01631A

    Article  Google Scholar 

  12. T. Nisisako, H. Suzuki, and T. Hatsuzawa, Micromachines 6, 1435 (2015). doi 10.3390/mi6101428

    Article  Google Scholar 

  13. Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, Sci. Rep. 6, 26840 (2016). doi 10.1038/srep26840

    Article  ADS  Google Scholar 

  14. R. K. Vadivelu, H. Kamble, M. J. A. Shiddiky, and N.-T. Nguyen, Micromachines 8, 94 (2017). doi 10.3390/mi8040094

    Article  Google Scholar 

  15. C. A. DeForest, B. D. Polizzotti, and K. S. Anseth, Nat. Mater. 8, 659 (2009). doi 10.1038/nmat2473

    Article  ADS  Google Scholar 

  16. I. V. Kukhtevich, Ya. S. Posmitnaya, K. I. Belousov, A. S. Bukatin, and A. A. Evstrapov, Nauchn. Priborostr. 25 (3), 65 (2015).

    Article  Google Scholar 

  17. T. Cubaud and T. G. Mason, Phys. Fluids 20, 053302 (2008). doi 10.1063/1.2911716

    Article  ADS  Google Scholar 

  18. A. S. Bukatin, I. S. Mukhin, E. I. Malyshev, I. V. Kukhtevich, A. A. Evstrapov, M. V. Dubina, Tech. Phys. 61, 1566 (2016).

    Article  Google Scholar 

  19. N. A. Filatov, D. V. Nozdriukhin, and A. S. Bukatin, J. Phys.: Conf. Ser. 917, 042024 (2017). doi 10.1088/1742-6596/917/4/042024

    Google Scholar 

  20. P. Gonzalez-Tello, F. Camacho, and G. Blazquez, J. Chem. Eng. Data 39, 611 (1994). doi 10.1021/je00015a050

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grant no. MK-2131.2017.4 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nozdriukhin.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozdriukhin, D.V., Filatov, N.A., Evstrapov, A.A. et al. Formation of Polyacrylamide and PEGDA Hydrogel Particles in a Microfluidic Flow Focusing Droplet Generator. Tech. Phys. 63, 1328–1333 (2018). https://doi.org/10.1134/S1063784218090141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218090141

Keywords

Navigation