Skip to main content
Log in

Influence of Transverse π–π-Bridging on Formation Properties of High-Modulus Carbon Nanotube Fibers

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model that interprets the increase in the elastic modulus of carbon nanotube fibers upon the formation of π–π cross links between individual nanotubes in the fiber is proposed. It is shown that the following three factors affect the elastic modulus of a fiber: the elastic modulus of the initial nanotubes; the degree of interaction between individual nanotubes in the fiber; and its aspect ratio, i.e., the ratio of the fiber length to its diameter. At the point of transition of these interactions from repulsion to attraction, the elastic modulus of the fiber reaches the corresponding value for an individual carbon nanotube and exceeds it in the region of attractive interactions. The basic factor for the rigidity of carbon nanotube fibers is their structure, which is characterized by fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. V. Eletskii, Phys. Usp. 50, 225 (2007).

    Article  ADS  Google Scholar 

  2. A. Mikhalchan and J. J. Vilatela, Carbon 150, 191 (2019).

    Article  Google Scholar 

  3. X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, and J. Kong, Adv. Mater. 18, 1505 (2006).

    Article  Google Scholar 

  4. W. Ma, L. Liu, R. Yang, T. Zhang, and L. Song, Adv. Mater. 21, 603 (2009).

    Article  Google Scholar 

  5. X. Liang, Y. Gao, J. Duan, Z. Liu, S. Fang, R. H. Baughman, L. Liang, and Q. Cheng, Carbon 150, 268 (2019).

    Article  Google Scholar 

  6. S. Boncel, R. M. Sundaram, A. H. Windle, and K. K. K. Koziol, ACS Nano 5, 9339 (2011).

    Article  Google Scholar 

  7. K. Liu, Y. H. Sun, X. Y. Lin, R. F. Zhou, J. P. Wang, and S. S. Fang, ACS Nano 4, 5827 (2010).

    Article  Google Scholar 

  8. Y. O. Im, S. H. Lee, T. Kim, J. Park, J. Lee, and K. H. Lee, Appl. Surf. Sci. 392, 342 (2017).

    Article  ADS  Google Scholar 

  9. X. Lu, N. Hiremathi, K. Hong, M. C. Evora, V. H. Ranson, and A. K. Naskar, Nanotechnology 28, 145603 (2017).

    Article  ADS  Google Scholar 

  10. G. V. Kozlov, P. G. Rizvanova, I. V. Dolbin, and G. M. Magomedov, Russ. Phys. J. 62, 127 (2019).

    Article  Google Scholar 

  11. L. B. Atlukhanova and G. V. Kozlov, Physicochemistry of Nanocomposites Polymer-Carbon Nanotubes (Sputnik+, Moscow, 2020) [in Russian].

    Google Scholar 

  12. D. Blond, V. Barron, M. Ruether, K. P. Ryan, V. Nicolosi, W. J. Blau, and J. N. Coleman, Adv. Funct. Mater. 16, 1608 (2006).

    Article  Google Scholar 

  13. A. K. Mikitaev and G. V. Kozlov, Phys. Solid State 57, 974 (2015).

    Article  ADS  Google Scholar 

  14. G. V. Kozlov, I. V. Dolbin, Yu. N. Karnet, and A. N. Vla-sov, Nanosci. Technol. 11, 275 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, G.V., Dolbin, I.V. Influence of Transverse π–π-Bridging on Formation Properties of High-Modulus Carbon Nanotube Fibers. Phys. Solid State 64, 193–196 (2022). https://doi.org/10.1134/S1063783422050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422050031

Keywords:

Navigation