Skip to main content
Log in

Formation of Nanoscale Cracks and Fractoluminescence upon Destruction of Carbon Ceramics

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We obtained a Raman spectrum for a surface layer of porous carbon ceramic (porosity ≈5%) of ≈80 nm thick. The analysis of the spectrum showed that the ceramics contain crystals of silicon carbide 6H‑SiC and silicon. The destruction of ceramics by diamond microcrystals resulted in fractoluminescence (FL). Its spectrum contained two bands at 1.6 and 1.9 eV. The first is emerged at the destruction of silicon crystals, and the second is emerged at 6H-SiC crystals. We obtained the time dependence of the intensity of the fractoluminescence signals with a time resolution of 2 ns. Three types of signals were observed: one is formed when the 6H-SiC crystals are destroyed; the second is formed when silicon crystals are destroyed; the third is formed when these crystals are simultaneously destroyed. The appearance of signals is associated with the formation of cracks arising from the breakthrough of barriers formed at the intersection of slip planes of dislocations in silicon carbide and silicon crystals. The size of cracks in 6H-SiC has been estimated: the smallest is 5.5 nm, and the largest is ≈18 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, The Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. V. I. Betekhtin and A. G. Kadomtsev, Phys. Solid State 47, 825 (2005).

    Article  ADS  Google Scholar 

  3. V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Foundations of Predicting the Durability of Structural Materials (Politekhnika, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  4. A. H. Cottrell, Theory of Crystal Dislocations (Gordon and Breach, New York, 1964).

    MATH  Google Scholar 

  5. V. I. Vladimirov, The Physical Nature of Metal Destruction (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  6. B. Zhang, X. L. Zheng, H. Tokura, and M. Yoshikawa, J. Mater. Proc. Technol. 132, 353 (2003).

    Article  Google Scholar 

  7. Z. Li, F. Zhang, and X. Luo, Appl. Surf. Sci. 448, 341 (2018).

    Article  ADS  Google Scholar 

  8. J. Yan, X. Gai, and H. Harada, J. Nanosci. Nanotech. 10 (2010).

  9. V. I. Vettegren’, A. V. Ponomarev, K. Arora, Haris Raza, R. I. Mamalimov, I. P. Shcherbakov, and I. V. Fokin, Phys. Solid State 60, 2300 (2018). https://doi.org/10.1134/S1063783418110355

    Article  ADS  Google Scholar 

  10. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  11. V. I. Vettegren, A. V. Ponomarev, R. I. Mamalimov, and I. P. Shcherbakov, Phys. Solid State 61, 1259 (2019). https://doi.org/10.21883/FTT.2019.07.47844.413

    Article  ADS  Google Scholar 

  12. V. I. Vettegren’, A. V. Ponomarev, R. I. Mamalimov, I. P. Shcherbakov, K. Arora, and D. Shrinagesh, Fiz. Zemli, No. 6, 76 (2019). https://doi.org/10.31857/S0002-33372019676-83

  13. V. I. Vettegren’, R. I. Mamalimov, I. P. Shcherbakov, and V. B. Kulik, Phys. Solid State 62, 1210 (2020). https://doi.org/10.1134/S1063783420070276

    Article  Google Scholar 

  14. A. I. Slutsker, A. G. Kadomtsev, V. I. Betekhtin, E. E. Damaskinskaya, and A. B. Sinani, Bull. Russ. Acad. Sci.: Phys. 73, 1410 (2009).

    Article  Google Scholar 

  15. J. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, J. Opt. Soc. Am. A 28, 2340 (2011).

    Article  ADS  Google Scholar 

  16. S. Nakashima and H. Harima, Phys. Status Solidi 162, 39 (1997).

    Article  ADS  Google Scholar 

  17. J. P. Russell, Appl. Phys. Lett. 6, 223 (1965). https://doi.org/10.1063/1.1754144

    Article  ADS  Google Scholar 

  18. W. Lu, A. T. Tarekegne, Y. Ou, S. Kamiyama, and H. Ou, Sci. Rep. 9, 16333 (2019). https://doi.org/10.1038/s41598-019-52871-6

    Article  ADS  Google Scholar 

  19. A. A. Lebedev, Semiconductors 33, 107 (1999).

    Article  ADS  Google Scholar 

  20. A. A. Lebedev, N. K. Poletaev, M. G. Rastegaeva, and A. M. Strel’chuk, Semiconductors 28, 981 (1994).

    ADS  Google Scholar 

  21. V. A. Zakrevsky and A. V. Shuldiner, Philos. Mag., B 71, 127 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren’.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettegren’, V.I., Kadomtsev, A.G., Shcherbakov, I.P. et al. Formation of Nanoscale Cracks and Fractoluminescence upon Destruction of Carbon Ceramics. Phys. Solid State 62, 2089–2093 (2020). https://doi.org/10.1134/S1063783420110396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110396

Keywords:

Navigation