Skip to main content
Log in

Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electron paramagnetic resonance (EPR) spectra of triplet centers in detonation nanodiamonds (DNDs) and diamond single crystals of submicrometer size, synthesized from those DNDs at high pressures and temperatures, are studied. In the EPR spectra of DNDs, signals from negatively charged nitrogen- vacancy centers (NV)/sup(-) with a g factor of g1 = 4.24 and multivacancies with g2 = 4.00 are observed. The signals from (NV)/sup(-) centers disappear in the spectra of diamond single crystals, and a quintet signal with g = 4.00 is detected at the position of the signal from multivacancies. Analysis of the shape and position of the quintet’ lines showed that this ESR signal is due to the pairs of nitrogen substitution centers in diamond, separated from each other by distances not exceeding 0.7 nm, between which a strong exchange interaction takes place. A comparison of the experimental data and the simulation results allows determining the spin-Hamiltonian parameters of the exchange-coupled pairs of paramagnetic impurity nitrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, Berlin, Heidelberg, 2001).

    Book  Google Scholar 

  2. I. A. Dobrinets, V. G. Vins, and A. M. Zaitsev, HPHTTreated Diamonds. Diamonds Forever, Vol. 181 of Springer Series in Materials Science (Springer, Berlin, Heidelberg, 2013).

    Google Scholar 

  3. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher, Phys. Rev. 115, 1546 (1959).

    Article  ADS  Google Scholar 

  4. J. H. N. Loubser and J. A. van Wyk, Rep. Prog. Phys. 41, 1201 (1978).

    Article  ADS  Google Scholar 

  5. K. M. Etmimi, M. E. Ahmed, P. R. Briddon, J. P. Goss, and A. M. Gsiea, Phys. Rev. B 79, 205207 (2009).

    Article  ADS  Google Scholar 

  6. V. A. Nadolinny, A. P. Yelisseyev, A. G. Badalyan, J. M. Baker, D. J. Twitchen, M. E. Newton, A. Hofstaetter, and B. Feigelson, Diamond Relat. Mater. 8, 1565 (1999).

    Article  ADS  Google Scholar 

  7. V. A. Nadolinny, A. P. Yelisseyev, J. M. Baker, D. J. Twitchen, M. E. Newton, A. Hofstaetter, and B. Feigelson, Phys. Rev. B 60, 5392 (1999).

    Article  ADS  Google Scholar 

  8. A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, and A. Ya. Vul’, J. Phys.: Condens. Matter 24, 225302 (2012).

    ADS  Google Scholar 

  9. V. Yu. Osipov, A. I. Shames, T. Enoki, K. Takai, M. V. Baidakova, and A. Ya. Vul’, Diamond Relat. Mater. 16, 2035 (2007).

    Article  ADS  Google Scholar 

  10. A. I. Shames, V. Yu. Osipov, H. J. von Bardeleben, J.-P. Boudou, F. Treussart, and A. Ya. Vul’, Appl. Phys. Lett. 104, 063107 (2014).

    Article  ADS  Google Scholar 

  11. F. M. Shakhov, A. M. Abyzov, S. V. Kidalov, A. A. Krasilin, E. Lähderanta, V. T. Lebedev, D. V. Shamshur, and K. Takai, Phys. Chem. Solids 103, 224 (2017).

    Article  ADS  Google Scholar 

  12. S. V. Kidalov, F. M. Shakhov, A. V. Shvidchenko, A. N. Smirnov, V. V. Sokolov, M. A. Yagovkina, and A. Ya. Vul’, Tech. Phys. Lett. 43, 53 (2017).

    Article  ADS  Google Scholar 

  13. A. T. Dideikin, E. D. Eidelman, S. V. Kidalov, D. A. Kirilenko, A. P. Meilakhs, F. M. Shakhov, A. V. Shvidchenko, V. V. Sokolov, R. A. Babunz, and A. Ya. Vul’, Diamond Relat. Mater. 75, 85 (2017).

    Article  ADS  Google Scholar 

  14. T. D. Varfolomeeva, A. G. Lyapin, S. V. Popova, N. F. Borovikov, I. P. Zibrov, and V. V. Brazhkin, Inorg. Mater. 52, 351 (2016).

    Article  Google Scholar 

  15. F. M. Shakhov, A. M. Abyzov, and K. Takai, J. Solid State Chem. 256, 72 (2017).

    Article  ADS  Google Scholar 

  16. S. Stoll and A. Schweiger, J. Magn. Res. 178, 42 (2006).

    Article  ADS  Google Scholar 

  17. V. Yu. Osipov, F. M. Shakhov, N. N. Efimov, V. V. Minin, S. V. Kidalov, and A. Ya. Vul’, Phys. Solid State 59, 1146 (2017).

    Article  ADS  Google Scholar 

  18. A. I. Shames, V. Yu. Osipov, J.-P. Boudou, A. M. Panich, H.-J. von Bardeleben, F. Treussart, and A. Ya. Vul’, J. Phys. D 48, 155302 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Osipov.

Additional information

Original Russian Text © V.Yu. Osipov, A.I. Shames, N.N. Efimov, F.M. Shakhov, S.V. Kidalov, V.V. Minin, A.Ya. Vul’, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 4, pp. 719–725.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, V.Y., Shames, A.I., Efimov, N.N. et al. Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature. Phys. Solid State 60, 723–729 (2018). https://doi.org/10.1134/S1063783418040236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418040236

Navigation