Skip to main content
Log in

On the Extended Holstein–Hubbard Model for Epitaxial Graphene on Metal

  • Carbon Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A model that combines the extended Hubbard model involving intra-atomic and interatomic Coulomb repulsion and the Holstein model describing the interaction of a band electron with an Einstein phonon is proposed. Three regions of the phase diagram are considered. The regions correspond to the states of spin- and charge-density waves and the state uniform in spin and charge. Numerical estimations for the Rh, Ir, and Pt substrates show that Coulomb interaction plays a leading part, making possible transitions from the uniform state to the states of spin- and charge-density waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Holstein, Ann. Phys. 8, 325 (1959).

    Article  ADS  Google Scholar 

  2. J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).

    Article  ADS  Google Scholar 

  3. M. Hohenadler and W. von der Linden, Phys. Rev. B 71, 184309 (2005).

    Article  ADS  Google Scholar 

  4. M. Berciu, Phys. Rev. B 75, 081101R (2007).

    Article  ADS  Google Scholar 

  5. R. P. Hardikar and R. T. Clay, Phys. Rev. B 75, 245103 (2007).

    Article  ADS  Google Scholar 

  6. S. Kumar and J. van den Brink, Phys. Rev. B 78, 155123 (2008).

    Article  ADS  Google Scholar 

  7. Y. Murakami, P. Werner, N. Tsuji, and H. Aoki, Phys. Rev. B 88, 125126 (2013).

    Article  ADS  Google Scholar 

  8. M. Chakraborty, M. Tezuka, and B. I. Min, Phys. Rev. B 89, 035146 (2014).

    Article  ADS  Google Scholar 

  9. P. Werner and M. Eckstein, Europhys. Lett. 109, 37002 (2015).

    Article  ADS  Google Scholar 

  10. S. Pradhan and G. V. Pai, Phys. Rev. B 92, 165124 (2015).

    Article  ADS  Google Scholar 

  11. I. V. Sankar and A. Chatterjee, Physica B 489, 17 (2016).

    Article  ADS  Google Scholar 

  12. T. Miyao, arXiv: 1402.5202; arXiv: 1610.09039.

  13. S. Yu. Davydov, Phys. Solid State 59, 1674 (2017).

    Article  ADS  Google Scholar 

  14. S. Yu. Davydov, The Theory of Adsorption: Method of Model Hamiltonians (SPbGETU LETI, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  15. S. Yu. Davydov, Phys. Solid State 55, 229 (2013).

    Article  ADS  Google Scholar 

  16. T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  17. S. Yu. Davydov and O. V. Posrednik, Bond-Orbital Method in the Theory of Semiconductors, The School-Book (SPbGETU LETI, St. Petersburg, 2007) [in Russian]. twirpx.com/file/1014608/

    Google Scholar 

  18. J.-C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, Top. Appl. Phys. 111, 673 (2008).

    Article  Google Scholar 

  19. K. Ishikawa and T. Ando, J. Phys. Soc. Jpn. 75, 084713 (2006).

    Article  ADS  Google Scholar 

  20. S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57, 837 (2015).

    Article  ADS  Google Scholar 

  21. W. A. Harrison, Phys. Rev. B 74, 205101 (2006).

    Article  ADS  Google Scholar 

  22. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  23. W. A. Harrison and G. K. Straub, Phys. Rev. B 36, 2695 (1987).

    Article  ADS  Google Scholar 

  24. S. Yu. Davydov, Phys. Solid State 59, 629 (2017).

    Article  ADS  Google Scholar 

  25. H. Zi-Pu, D. F. Ogletree, M. A. van Hove, and G. A. Somorjai, Surf. Sci. 180, 433 (1987).

    Article  ADS  Google Scholar 

  26. A. T. N’Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, Phys. Rev. Lett. 97, 215501 (2006), Phys. Rev. Lett. 101, 219904(E) (2008).

    Article  ADS  Google Scholar 

  27. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996; Fizmatgiz, Moscow, 1978).

    MATH  Google Scholar 

  28. V. Yu. Irkhin and Yu. P. Irkhin, The Electronic Structure, Correlation Effects and Physical Properties of D-and F-Metals and Their Compounds (Ekaterinburg, UrORAN, 2004; Cambridge International Science, New York, 2007).

    MATH  Google Scholar 

  29. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, Phys. Rev. B 78, 073401 (2008).

    Article  ADS  Google Scholar 

  30. I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Phys. Rev. Lett. 102, 056808 (2009).

    Article  ADS  Google Scholar 

  31. R. Larciprete, S. Ulstrup, P. Lacovig, M. Dalmiglio, M. Bianchi, F. Mazzola, L. Hornek[ae]r, F. Orlando, A. Baraldi, P. Hofmann, and S. Lizzit, ASC Nano 6, 9551 (2012).

    Article  Google Scholar 

  32. S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, A. Baraldi, D. Alfe, L. Hornek[ae]r, and P. Hofmann, Phys. Rev. B 86, 161402(R) (2012), Phys. Rev. B 93, 239901(E) (2016).

    Google Scholar 

  33. M. Kralj, I. Pletikosic, M. Petrovic, P. Pervan, M. Milun, A. T. N’Diaye, C. Busse, T. Michely, J. Fujii, and I. Vobornik, Phys. Rev. B 84, 075427 (2011).

    Article  ADS  Google Scholar 

  34. Ph. Hofmann, I. Yu. Sklyadneva, E. D. L. Rienks, and E. V. Chulkov, New J. Phys. 11, 125005 (2009).

    Article  ADS  Google Scholar 

  35. J. C. Johannsen, S. Ulstrup, M. Bianchi, R. Hatch, D. Guan, F. Mazzola, L. Hornek[ae]r, F. Fromm, C. Raidel, T. Seyller, and P. Hofmann, J. Phys.: Condens. Matter 25, 094001 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 2, pp. 238–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. On the Extended Holstein–Hubbard Model for Epitaxial Graphene on Metal. Semiconductors 52, 226–230 (2018). https://doi.org/10.1134/S1063782618020033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618020033

Navigation