Skip to main content
Log in

Method to Improve Initial Azimutal Uniformity of a Current Shell in Devices with a Plasma Focus

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

In a device with a plasma focus, the possibility of improving the initial azimuthal uniformity of the current plasma shell is realized by enhancing the stabilizing action of the skin effect at an increase in the initial rate of the discharge current rise. An additional current source is used, which is switched on before the operation of the vacuum discharger triggering the capacitor bank. The source creates a breakdown along the insulator in the discharge chamber and a rise in current with a high initial rate, which cannot be provided in the devices with a traditional circuit of switching by a vacuum discharger, immediately after the breakdown. The use of an additional current source in the test experiments made it possible to increase the working pressure of deuterium in the chamber more than by a factor of three and significantly increase the stability of the device. It is shown that when an additional current source is switched on, an azimuthally uniform current plasma shell with a sufficiently high degree of ionization is formed in the discharge chamber, and it excludes the development of large-scale current perturbations during a subsequent flow across the shell of a growing discharge current in the capacitor bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. A. Burtsev, V. A. Gribkov, and T. I. Filippova, in Advances in Science and Technology, Ser. Plasma Physics, Ed. by V. D. Shafranov (VINITI, Moscow, 1981), Vol. 2, p. 80 [in Russian].

    Google Scholar 

  2. S. I. Braginskii and V. V. Vikhrev, Preprint No. 2442 (Kurchatov Institute of Atomic Energy, Moscow, 1974).

  3. P. V. Dudai, A. A. Zimenkov, V. A. Ivanov, E. I. Ivanov, G. V. Karpov, S. M. Polyushko, A. N. Skobelev, and A. Yu. Fevralev, J. Appl. Mech. Tech. Phys. 56, 44 (2015).

    Article  ADS  Google Scholar 

  4. V. E. Ablesimov, A. V. Andrianov, A. A. Bazanov, A. M. Glybin, Yu. N. Dolin, I. Yu. Drozdov, Yu. M. Drozdov, P. V. Dudai, A. A. Zimenkov, V. A. Ivanov, A. V. Ivanovskii, A. E. Kalinychev, G. V. Karpov, A. I. Kraev, S. S. Lomtev, et al., J. Appl. Mech. Tech. Phys. 56, 77 (2015).

    Article  ADS  Google Scholar 

  5. H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam, 1970).

    Google Scholar 

  6. V. K. Chernyshev, in Megauss and Megaampere Pulse Technology and Applications: Proceedings of the 7th International Conference on Megagauss Magnetic Field Generation and Related Experiments, Sarov, 1996, Ed. by V. K. Chernyshev, V. D. Selemir and L. N. Plyashkevich (VNIIEF, Sarov, 1997), p. 41.

  7. S. I. Braginskii and G. I. Budker, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1959), Vol. 1.

  8. S. I. Braginskii and V. V. Vikhrev, Sov. Phys.–Tech. Phys. 18, 1578 (1974).

    ADS  Google Scholar 

  9. S. I. Braginskii and V. V. Vikhrev, Teplofiz. Vys. Temp. 14, 254 (1976).

    Google Scholar 

  10. V. V. Vikhrev and S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1986), Vol. 10, p. 425.

    Google Scholar 

  11. I. F. Kvartskhava and E. Yu. Khautiev, Plasma Focus Studies at Coaxial Accelerator with Gas Preionozation (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  12. S. Ahmad, M. Sadiq, S. Hussain, M. Shafiq, P. Lee, M. Zakaullah, and A. Waheed, Europhys. Lett. 73, 42 (2006).

    Article  ADS  Google Scholar 

  13. S. Ahmad, A. Qayyum, M. Hassan, and M. Zakaullah, Plasma Phys. Rep. 43, 749 (2017).

    Article  ADS  Google Scholar 

  14. N. V. Filippov, T. I. Filippova, and V. P. Vinogradov, Nucl. Fusion, Suppl., Part 2, 577 (1962).

  15. A. I. Pavlovskii, E. N. Smirnov, V. N. Suvorov, V. Ya. Latysh, and A. A. Cherkasov, Prib. Tekh. Eksp., No. 1, 122 (1974).

  16. J. W. Mather and P. J. Bottoms, Phys. Fluids 11, 611 (1968).

    Article  ADS  Google Scholar 

  17. A. I. Pavlovskii, V. S. Bosamykin, and G. V. Karpov, USSR Inventor’s Certificate no. 2774052/25, April 23, 1979.

  18. Diagnostics of Single-Pulse Radiation, Ed. by A. I. Veretennikov and K. N. Danilenko (IzdAT, Moscow, 1999) [in Russian].

  19. V. V. Bragin, V. V. Glushikhin, V. I. Golubev, V. M. Gorbachev, V. V. Gorbunov, V. M. Kuznetsov, N. G. Makeev, E. S. Pashchenko, N. V. Rubtsov, A. A. Spirin, O. K. Surskii, P. L. Usenko, V. A. Tsukerman, and G. N. Cheremukhin, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., Spec. Issue: TIYaS-XI, 153 (1997).

  20. V. I. Golubev, N G. Makeev, E. S. Pashchenko, N. V. Rubtsov, A. A. Spirin, O. K. Surskii, V. A. Tsukerman, and G. N. Cheremukhin, JETP Lett. 37, 20 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Karpov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovskiy, A.V., Kalinychev, A.E. & Karpov, G.V. Method to Improve Initial Azimutal Uniformity of a Current Shell in Devices with a Plasma Focus. Plasma Phys. Rep. 47, 121–127 (2021). https://doi.org/10.1134/S1063780X21020045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21020045

Keywords:

Navigation