Skip to main content
Log in

Features of Electromagnetic Field Excitation in a Capacitive HF Discharge. I. General Aspects. A Simple Model of Symmetric Discharge

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

Electrodynamic properties of a low-pressure (electron collision frequency much lower than the field frequency) capacitive high-frequency (HF) discharge with large-area electrodes maintained by an electromagnetic field with frequency higher than 13 MHz is studied analytically. The discharge is sustained by surface waves propagating along the plasma–space-charge sheath–metal interface. When describing the sheath, dispersion curves for even and odd surface waves in a three-layer structure (sheath–plasma–sheath) surrounded by metal boundaries are calculated within the framework of the matrix model. It is demonstrated that the field of the fundamental mode (the quasi-TEM mode) must be taken into account for correct discharge impedance calculation in the case of low electron densities, while the field of the surface wave must be taken into account in the case of high electron densities. An approximate expression governing the discharge impedance that is based on accounting only for one mode is derived. The expression is valid at low electron densities when the surface waves are absent, as well as high electron densities exceeding the value giving rise to a geometric resonance in the plasma–sheath system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Equations (12) and (13) are written in the form convenient for surface waves dispersion calculation. Their analogs for decaying waves can be easily obtained from (12) and (13) by making the following substitutions: \(p \to i\tilde {p}\), \({\text{tanh}}\left( {i\tilde {p}{{L}_{2}}} \right) \to i{\text{tan}}\left( {\tilde {p}{{L}_{2}}} \right)\), \(i\tilde {p}{\text{tanh}}\left( {i\tilde {p}{{L}_{2}}} \right) \to - \tilde {p}{\text{tan}}\left( {\tilde {p}{{L}_{2}}} \right)\), \({{{\text{tanh}}\left( {i\tilde {p}{{L}_{2}}} \right)} \mathord{\left/ {\vphantom {{{\text{tanh}}\left( {i\tilde {p}{{L}_{2}}} \right)} {i\tilde {p}}}} \right. \kern-0em} {i\tilde {p}}} \to {{{\text{tan}}\left( {\tilde {p}{{L}_{2}}} \right)} \mathord{\left/ {\vphantom {{{\text{tan}}\left( {\tilde {p}{{L}_{2}}} \right)} {\tilde {p}}}} \right. \kern-0em} {\tilde {p}}}\), \(h \to i\tilde {h}\), \({{J}_{n}}\left( {ihr} \right) \to {{i}^{n}}{{I}_{n}}\left( {\tilde {h}r} \right)\). Therefore, as a rule, the corresponding expressions for the decaying waves will not be presented due to them being rather cumbersome.

REFERENCES

  1. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005).

    Book  Google Scholar 

  2. G. F. Ivanovskii and V. I. Petrov, Ion-Plasma Materials Processing (Radio i Svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  3. J. Taillet, Am. J. Phys. 37, 423 (1969).

    Article  ADS  Google Scholar 

  4. V. A. Godyak, Sov. J. Plasma Phys. 2, 78 (1976).

    Google Scholar 

  5. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  6. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).

  7. P. Leprince, G. Mattieussent, and W. P. Allis, J. Appl. Phys. 42, 4 (1971).

    Article  Google Scholar 

  8. S. Samukawa, M. Hori, S. Raul, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.‑P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012).

  9. K. S. Collins, C. A. Roderick, S.-L. Yang, D. N. K. Wang, and D. Maydan, US Patent No. US5210466A (May 11, 1993).

  10. H. Schmidt, L. Sansonnens, A. A. Howling, Ch. Hollenstein, M. Elyaakoubi, and J. P. M. Schmitt, J. Appl. Phys. 95, 4559 (2004).

    Article  ADS  Google Scholar 

  11. E. Kawamura, M. A. Lieberman, and D. B. Graves, Plasma Sources Sci. Technol. 23, 064003 (2014).

  12. A. Perret, P. Chabert, O.-P. Booth, J. Jolly, J. Gulion, and Ph. Auvray, Appl. Phys. Lett. 83, 243 (2003).

    Article  ADS  Google Scholar 

  13. T. Ohiwa, H. Hayashi, I. Sakai, A. Kolma, and E. Shinomiya, Jpn. J. Appl. Phys. 43, 6413 (2004).

    Article  ADS  Google Scholar 

  14. H. H. Goto, H. D. Lome, and T. Ohmi, J. Vac. Sci. Technol., A 10, 3048 (1992).

    Article  ADS  Google Scholar 

  15. Z. Chen, S. Rauf, and K. Collins, J. Appl. Phys. 108, 073301 (2010).

  16. S. Sharma, N. Sirse, A. Sen, M. M. Turner, and A. R. Ellingboe, Phys. Plasmas 26, 103508 (2019).

  17. S. Wilczek, J. Trieschmann, J. Schulze, E. Schuengel, R. P. Brinkmann, A. Derzsi, I. Korolov, Z. Donkó, and T. Mussenbrock, Plasma Sources Sci. Technol. 24, 024002 (2015).

  18. S. Wilczek, J. Trieschmann, D. Eremin, R. P. Brinkmann, J. Schulze, E. Schuengel, A. Derzsi, I. Korolov, P. Hartmann, Z. Donkó, and T. Mussenbrock, Phys. Plasmas 23, 063514 (2016).

  19. S. Sharma, N. Sirse, A. Sen, M. M. Turner, and A. R. Ellingboe, Phys. Plasmas 23, 110701 (2016).

  20. T. Kitamura, N. Nakano, T. Makabe, and Y. Yamaguchi, Plasma Sources Sci. Technol. 2, 40 (1993).

    Article  ADS  Google Scholar 

  21. S. Segawa, M. Kurihara, N. Nakano, and T. Makabe, Jpn. J. Appl. Phys. 38, 4416 (1999).

    Article  ADS  Google Scholar 

  22. A. E. Park, B. U. Cho, and J. K. Lee, IEEE Trans. Plasma Sci. 31, 628 (2003).

    Article  ADS  Google Scholar 

  23. J. Perrin, J. Schmitt, C. Hollenstein, A. Howling, and L. Sansonnes, Plasma Phys. Control. Fusion 42, B353 (2000).

    Article  ADS  Google Scholar 

  24. J. Schmitt, M. Elyaakoubu, and L. Sansonnes, Plasma Sources Sci. Technol. 11, A206 (2002).

    Article  ADS  Google Scholar 

  25. T. Mussenbrock, T. Hemke, D. Ziegler, R. P. Brinkman, and M. Klick, Plasma Sources Sci. Technol. 17, 025018 (2008).

  26. S. E. Savas and R. W. Plavidal, J. Vac. Sci. Technol., A 6, 1775 (1988).

    Article  ADS  Google Scholar 

  27. M. A. Liberman, J. P. Booth, P. Chabert, J. M. Rax, and M. M. Turner, Plasma Sources Sci. Technol. 11, 283 (2002).

    Article  ADS  Google Scholar 

  28. K. A. Alshakami and S. Daniels, AIP Adv. 9, 035047 (2019).

  29. S. M. Hwang, Thin Solid Films 587, 28 (2015).

    Article  ADS  Google Scholar 

  30. D. J. Cooperberg, Phys. Plasmas 5, 862 (1998).

    Article  ADS  Google Scholar 

  31. D. J. Cooperberg and C. K. Birdsall, Plasma Sources Sci. Technol. 7, 41 (1998).

    Article  ADS  Google Scholar 

  32. S. A. Dvinin, A. G. Vologirov, V. B. Mikheev, and V. S. Sviridkina, Plasma Phys. Rep. 34, 688 (2008).

    Article  ADS  Google Scholar 

  33. P. Chabert, J. Phys. D: Appl. Phys. 40, R63 (2007).

    Article  ADS  Google Scholar 

  34. I. Lee, D. B. Graves, and M. A. Lieberman, Plasma Sources Sci. Technol. 17, 015018 (2008).

  35. L. Sansonnens, A. A. Howling, and Ch. Hollenstein, Plasma Sources Sci. Technol. 15, 302 (2006).

    Article  ADS  Google Scholar 

  36. M. P. Bachinski, Radio Corp. Am. Rev. 28, 111 (1967).

    Google Scholar 

  37. E. K. Miller, Radio Sci. 3, 1175 (1968).

    Article  ADS  Google Scholar 

  38. M. L. Schiff and J. A. Fejer, Radio Sci. 5, 819 (1970).

    ADS  Google Scholar 

  39. P. Meyer, N. Vernet, and P. Lassudrie-Duchesne, J. Appl. Phys. 45, 700 (1974).

    Article  ADS  Google Scholar 

  40. G. A. Hebner, E. V. Barnat, P. A. Miller, A. M. Paterson, and J. P. Holland, Plasma Source Sci. Technol. 15, 889 (2006).

    Article  ADS  Google Scholar 

  41. W. Gekelman, M. Barnes, S. Vincena, and P. Pribyl, Phys. Rev. Lett. 103, 045003 (2009).

  42. D. Sung, J. Woo, K. Lim, K. Kim, V. Volynets, and G.‑H. Kim, J. Appl. Phys. 106, 023303 (2009).

  43. X. Xu, S.-X. Zhao, Yu.-Ru. Zhang, and Y.-N. Wang, J. Appl. Phys. 108, 043308 (2010).

  44. D. Eremin, T. Hemke, R. P. Brinkmann, and T. Mussenbrock, J. Phys. D: Appl. Phys. 46, 084017 (2013).

  45. E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, Phys. Plasmas 25, 093517 (2018).

  46. S. A. Dvinin, V. A. Dovzhenko, and G. S. Solntsev, Sov. J. Plasma Phys. 8, 698 (1982).

    ADS  Google Scholar 

  47. S. A. Dvinin, S. A. Postnikov, G. S. Solntsev, and L. I. Tsvetkova, Sov. J. Plasma Phys. 9, 749 (1983).

    Google Scholar 

  48. Y. Yasaka, D. Nozaki, K. Koga, M. Ando, M. Yamamoto, N. Coto, N. Ishii, and T. Morimoto, Jpn. J. Appl. Phys. 38, 4309 (1999).

    Article  ADS  Google Scholar 

  49. D. Bohm, The Characteristics of Electrical Discharge in Magnetic Fields (McGraw-Hill, New York, 1949), p. 77.

    Google Scholar 

  50. C. D. Child, Phys. Rev. (Ser. I) 32, 492 (1911).

    Article  ADS  Google Scholar 

  51. I. Langmuir, Phys. Rev. 2, 450 (1913).

    Article  ADS  Google Scholar 

  52. A. Perret, P. Chabert, J. Jolly, and J. P. Booth, Appl. Phys. Lett. 86, 021501 (2005).

  53. H. M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727 (1926).

    Article  ADS  Google Scholar 

  54. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasma: Theory and Applications (Springer-Verlag, New York, 1975).

    Book  Google Scholar 

  55. J. G. Laframboise and J. Rubinstein, Phys. Fluids 19, 1900 (1976).

    Article  ADS  Google Scholar 

  56. J. G. Laframboise, Report No. 100 (University of Toronto, Institute for Aerospace Studies, Toronto, ON, 1966).

  57. M. A. Lieberman, IEEE Trans. Plasma Sci. 16, 638 (1988).

    Article  ADS  Google Scholar 

  58. M. A. Lieberman, IEEE Trans. Plasma Sci. 17, 338 (1989).

    Article  ADS  Google Scholar 

  59. U. Czarnetzki, Phys. Rev. E 88, 063101 (2013).

  60. V. V. Nikol’skii and T. I. Nikol’skaya, Electrodynamics and Radio Wave Propagation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  61. L. B. Felsen, and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, 1973).

    MATH  Google Scholar 

  62. L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1990) [in Russian].

  63. V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasmas and Plasma-Like Media (Gosatomizdat, Moscow, 1961; Gordon & Breach, New York, 1965).

  64. V. A. Godyak, Sov. Phys.–Tech. Phys. 16, 1073 (1972).

    ADS  Google Scholar 

  65. I. D. Kaganovich, O. V. Polomarov, and C. E. Theodosiou, Phys. Plasmas 11, 2399 (2004).

    Article  ADS  Google Scholar 

  66. I. D. Kaganovich, O. V. Polomarov, and C. E. Theodosiou, IEEE Trans. Plasma Sci. 34, 696 (2006).

    Article  ADS  Google Scholar 

  67. O. V. Polomarov, C. E. Theodosiou, I. D. Kaganovich, D. J. Economou, and B. N. Ramamurthi, IEEE Trans. Plasma Sci. 34, 767 (2006).

    Article  ADS  Google Scholar 

  68. V. A. Godyak and V. I. Kolobov, Phys. Rev. Lett. 79, 4589 (1997).

    Article  ADS  Google Scholar 

  69. G. J. M. Hagelaar, Plasma Sources Sci. Technol. 17, 025017 (2008).

  70. G. J. M. Hagelaar, Phys. Rev. Lett. 100, 025001 (2008).

  71. Z. F. Ding, B. Sun, and W. G. Huo, Phys. Plasmas 22, 063504 (2015).

  72. J. Triesmachmann and T. Mussenbrock, Plasma Sources Sci. Technol. 26, 024004 (2017).

  73. I. D. Kaganovich, Phys. Rev. Lett. 89, 2065006 (2002).

  74. M. M. Turner, J. Phys. D: Appl. Phys. 42, 194008 (2009).

  75. T. Lafleur and P. Chabert, Plasma Sources Sci. Technol. 24, 044002 (2015).

  76. T. Lafleur, P. Chabert, M. M. Turner, and J. P. Booth, Plasma. Sources Sci. Technol. 23, 015016 (2014).

  77. T. Lafleur, Plasma Sources Sci. Technol. 25, 013001 (2016).

  78. I. D. Kaganovich and L. D. Tsendin, IEEE Trans. Plasma Sci. 20, 86 (1992).

    Article  ADS  Google Scholar 

  79. E. Kawamura, M. A. Lieberman, and A. J. Lichtenberg, Phys. Plasmas 21, 123505 (2014).

  80. V. Vahedi, M. A. Lieberman, G. Dipiezo, T. D. Rognlien, and D. Hewett, J. Appl. Phys. 78, 1446 (1995).

    Article  ADS  Google Scholar 

  81. K. C. Shaing and A. Y. Aydemir, Phys. Plasmas 4, 3163 (1997).

    Article  ADS  Google Scholar 

  82. P. Ahr, E. Schungel, J. Schulze, Ts. V. Tsankov, and U. Czarnetszki, Plasma Sources Sci. Technol. 24, 044006 (2015).

  83. Th. Wegner, C. Kullig, and J. Melchener, Plasma Sources Sci. Technol. 24, 044001 (2015).

  84. J. Schulze, Z. Donkó, T. Lafleur, S. Wilczek, and R. P. Brinkmann, Plasma Sources Sci. Technol. 27, 055010 (2018).

  85. M. Vass, S. Wilczek, T. Lafleur, R. P. Brinkmann, Z. Donkó, and J. Schulze, Plasma Sources Sci. Technol. 29, 026019 (2020).

  86. P. S. Bulkin, S. A. Dvinin, and G. S. Solntsev, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 23, 84 (1982).

    Google Scholar 

  87. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radio Wave Propagation in the Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  88. I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966).

    Google Scholar 

  89. P. K. Cibin, Plasma Phys. 22, 609 (1980).

    Article  ADS  Google Scholar 

  90. V. V. Nikol’skii, Variational Methods for Inner Problems of Electrodynamics (Nauka, Moscow, 1967), p. 169 [in Russian].

    Google Scholar 

  91. S. G. Mikhlin, Variational Methods in Mathematical Physics (Nauka, Moscow, 1970; Pergamon Press, Oxford, 1964).

  92. V. N. Ponomaryev and G. S. Solntsev, Sov. Phys.–Tech. Phys. 11, 1027 (1967).

    Google Scholar 

  93. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 2004; Dover, New York, 2011).

  94. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Dvinin, O. A. Sinkevich or D. K. Solikhov.

Additional information

Translated by I. Shumai

Appendices

ANALYSIS OF DISPERSION EQUATION FOR WAVES IN THE THREE-LAYER SYSTEM

Propagation constants of the waves, appearing in the above equations, calculation can be simplified by considering a plane problem, representing a structure infinite in the X0Z plane, that consists of three dielectric layers with dielectric permittivities ε1, εP, ε2, and thicknesses d1, 2L–d1–d2, d2, respectively, instead of a cylindrical one. The 0X axis is parallel to the direction of wave propagation, the 0Z axis is perpendicular to it, and the 0Y axis is perpendicular to the structure surface. The equivalence of these two approaches follows from the possibility of expanding a plane wave in cylindrical waves, as well as from the possibility of solving the above problem by the separation of variables method [93, 94] both in cylindrical and plane coordinate systems. The wave prorogation constant along the structure h is defined by the determinant of the system of equations describing field distribution along the 0Z axis, that depend only on this coordinate and are identical in both coordinate systems.

Electrodes made of metal are located at the boundaries of the structure of thickness 2L. It is convenient to choose the coordinate system in such a way that zero on the 0Z axis would be located at the medium point of the positive column, i.e., so that the plasma and sheath boundaries have coordinates –L2 and L2 (d1 is the thickness of the upper sheath, d2 is the thickness of the lower sheath, and 2L = 2L2 + d1 + d2). For an E-wave, equations (1), (3), and (4), with zero boundary conditions (2) for the radial electric field imposed at the walls in the discharge chamber, yield the following expressions governing the electromagnetic field:

$$\begin{gathered} \left\{ {\begin{array}{*{20}{c}} {{{e}_{z}}\left( z \right)} \\ {{{e}_{x}}\left( z \right)} \\ {{{b}_{y}}\left( z \right)} \end{array}} \right\} = {{A}_{1}} \\ \times \,\left( {\begin{array}{*{20}{c}} { - \frac{{ih}}{{\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{1}}} }}\coth \left( {\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{1}}} \left( {{{L}_{2}}\, + \,{{d}_{1}}\, - \,z} \right)} \right)} \\ { - \sinh \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{1}}} \left( {{{L}_{2}} + {{d}_{1}} - z} \right)} \right)} \\ {\sqrt {\frac{{{{\varepsilon }_{0}}}}{{{{\mu }_{0}}}}} \frac{{ik{{\varepsilon }_{1}}}}{{\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{1}}} }}\coth \left( {\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{1}}} \left( {{{L}_{2}}\, + \,{{d}_{1}}\, - \,z} \right)} \right)} \end{array}} \right) \\ \times \;\frac{{\exp \left( { - i\omega t + ihx} \right)}}{{\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{1}}} {{d}_{1}}} \right)}} \\ \end{gathered} $$
(A.1)

in the upper sheath,

$$\left\{ {\begin{array}{*{20}{c}} {{{e}_{z}}\left( z \right)} \\ {{{e}_{x}}\left( z \right)} \\ {{{b}_{y}}\left( z \right)} \end{array}} \right\} = \frac{{\exp \left( { - i\omega t + ihx} \right)}}{{\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} {{L}_{P}}} \right)}}$$
$$\, \times \left\{ {{{A}_{2}}\left( {\begin{array}{*{20}{c}} { - \frac{{ih}}{{\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} }}\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{1}}} z} \right)} \\ {\sinh \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{1}}} z} \right)} \\ {\sqrt {\frac{{{{\varepsilon }_{0}}}}{{{{\mu }_{0}}}}} \frac{{ik{{\varepsilon }_{P}}}}{{\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} }}\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{2}}} z} \right)} \end{array}} \right)} \right.$$
(A.2)
$$\, + \left. {{{B}_{2}}\left( {\begin{array}{*{20}{c}} { - \frac{{ih}}{{\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} }}\sinh \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{1}}} z} \right)} \\ {\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} z} \right)} \\ {\sqrt {\frac{{{{\varepsilon }_{0}}}}{{{{\mu }_{0}}}}} \frac{{ik{{\varepsilon }_{P}}}}{{\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} }}\sinh \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} z} \right)} \end{array}} \right)} \right\}$$

in plasma, and

$$\begin{gathered} \left\{ {\begin{array}{*{20}{c}} {{{e}_{z}}\left( z \right)} \\ {{{e}_{x}}\left( z \right)} \\ {{{b}_{y}}\left( z \right)} \end{array}} \right\} = {{A}_{3}} \\ \times \;\left( {\begin{array}{*{20}{c}} { - \frac{{ih}}{{\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{2}}} }}\coth \left( {\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{2}}} \left( {z\, + \,{{L}_{2}}\, + \,{{d}_{2}}} \right)} \right)} \\ {\sinh \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{2}}} \left( {z + {{L}_{2}} + {{d}_{2}}} \right)} \right)} \\ {\sqrt {\frac{{{{\varepsilon }_{0}}}}{{{{\mu }_{0}}}}} \frac{{ik{{\varepsilon }_{2}}}}{{\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{2}}} }}\coth \left( {\sqrt {{{h}^{2}}\, - \,{{k}^{2}}{{\varepsilon }_{2}}} \left( {z\, + \,{{L}_{2}}\, + \,{{d}_{2}}} \right)} \right)} \end{array}} \right) \\ \times \;\frac{{\exp \left( { - i\omega t + ihx} \right)}}{{\coth \left( {\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{2}}} {{d}_{2}}} \right)}} \\ \end{gathered} $$
(A.3)

in the lower sheath.

The relation between the amplitudes of symmetric and anti-symmetric modes in the surface wave, and the dispersion relation, follow from equalities of tangent components of the electromagnetic field:

$$\begin{gathered} \frac{{{{B}_{{2 \pm }}}}}{{{{A}_{{2 \pm }}}}} = - \frac{{\left( {\frac{{{{\varepsilon }_{P}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{1}}} }}{{{{\varepsilon }_{1}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} }}\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{1}}} {{d}_{1}}} \right) + \tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} {{L}_{2}}} \right)} \right)}}{{\left( {1 + \frac{{{{\varepsilon }_{P}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{1}}} }}{{{{\varepsilon }_{1}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} }}\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} {{L}_{2}}} \right)\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{1}}} {{d}_{1}}} \right)} \right)}} \\ = \frac{{\left( {\frac{{{{\varepsilon }_{P}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{2}}} }}{{{{\varepsilon }_{2}}\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} }}\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{2}}} {{d}_{2}}} \right) + \tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} {{L}_{2}}} \right)} \right)}}{{\left( {1 + \frac{{{{\varepsilon }_{P}}\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{2}}} }}{{{{\varepsilon }_{2}}\sqrt {{{h}^{2}} - {{k}^{2}}{{\varepsilon }_{P}}} }}\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}} {{L}_{2}}} \right)\tanh \left( {\sqrt {h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{2}}} {{d}_{2}}} \right)} \right)}}. \\ \end{gathered} $$
(A.4)

The minus sign denotes the surface wave with a shorter wavelength, while the plus sign denotes the surface wave with a longer wavelength. Introducing variables \({{\tilde {p}}^{2}} = h_{ \pm }^{2} - {{k}^{2}}{{\varepsilon }_{P}}\), \({{p}^{2}} = {{k}^{2}}{{\varepsilon }_{P}} - h_{ \pm }^{2}\), \(a_{{1,2}}^{2} = h_{ \pm }^{2} - \) \({{k}^{2}}{{\varepsilon }_{{1,2}}}\), \(\tilde {a}_{{1,2}}^{2} = {{k}^{2}}{{\varepsilon }_{{1,2}}} - h_{ \pm }^{2}\), we have

$$\frac{{{{B}_{{2 \pm }}}}}{{{{A}_{{2 \pm }}}}} = - \frac{{\left( {\frac{{{{\varepsilon }_{P}}{{a}_{1}}}}{{{{\varepsilon }_{1}}p}}\tanh \left( {{{a}_{1}}{{d}_{1}}} \right) + \tanh \left( {p{{L}_{2}}} \right)} \right)}}{{\left( {1 + \frac{{{{\varepsilon }_{P}}{{a}_{1}}}}{{{{\varepsilon }_{1}}p}}\tanh \left( {p{{L}_{2}}} \right)\tanh \left( {{{a}_{1}}{{d}_{1}}} \right)} \right)}} = \frac{{\left( {\frac{{{{\varepsilon }_{P}}{{a}_{2}}}}{{{{\varepsilon }_{2}}p}}\tanh \left( {{{a}_{2}}{{d}_{2}}} \right) + \tanh \left( {p{{L}_{2}}} \right)} \right)}}{{\left( {1 + \frac{{{{\varepsilon }_{P}}{{a}_{2}}}}{{{{\varepsilon }_{2}}p}}\tanh \left( {{{a}_{2}}{{L}_{2}}} \right)\tanh \left( {p{{d}_{2}}} \right)} \right)}}.$$
(A.5)

Dispersion relation (12) follows from (A.4) and (A.5).

APPENDIX B

FIELD STRUCTURE OF THE SURFACE WAVE, HIGHER-ORDER MODES, AND WAVEGUIDE MODES

The following notations for cylindrical functions were used in Tables 1–3: \({{P}_{0}}(x) = {{J}_{0}}(x)\), \(H_{0}^{{(1)}}(x),H_{0}^{{(2)}}(x)\), \({{Q}_{0}}(x) = {{I}_{0}}(x)\), \({{K}_{0}}(x)\), \({{P}_{1}}(x) = {{J}_{1}}(x)\), \(H_{1}^{{(1)}}(x)\), \(H_{1}^{{(2)}}(x)\), and \({{Q}_{1}}(x) = {{I}_{1}}(x)\), \( - {{K}_{1}}(x)\). The notations for the propagation constant are \({{\tilde {h}}_{{n \pm }}} = i{{h}_{{n \pm }}}\), \({{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{a} }_{{n + }}}\, = \,\pi (1{\text{/}}2\, + \,n){\text{/}}L\), \({{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{a} }_{{n - }}} = (\pi n){\text{/}}L\), and \({{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{h} }_{{n \pm }}} = \sqrt {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{a} _{{n \pm }}^{2} - {{k}^{2}}} \).

Table 3. Field distribution for TEM wave and decaying waves outside of plasma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvinin, S.A., Sinkevich, O.A., Kodirzoda, Z.A. et al. Features of Electromagnetic Field Excitation in a Capacitive HF Discharge. I. General Aspects. A Simple Model of Symmetric Discharge. Plasma Phys. Rep. 46, 1181–1204 (2020). https://doi.org/10.1134/S1063780X20120028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20120028

Keywords:

Navigation