Skip to main content
Log in

Study of the Time Dependence of the Plasma Formation Intensity at the Current Implosion of Cylindrical Wire and Fiber Arrays from Different Substances

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A characteristic feature of the implosion of multiwire arrays on powerful high-current electrophysical facilities (ZR, Angara-5-1, Julong-1 (PTS), MAGPIE, etc.) is the process of extended wire ablation. It is based on the fact that the substance of the wires is not converted into plasma instantly, but is supplied into the discharge relatively slowly at the rate \(\dot {m}(t)\) in about 70–80% of the rise time of the facility current. It is believed that the plasma is formed on the surface of the cores of the exploded wires due to the energy coming from the hot plasma corona surrounding the core of the wire in the form of the heat flux and emission. In this paper, we propose a new approach to determining the quantity \(\dot {m}(t)\) as the main quantitative characteristic of the process of the extended wire ablation in wire (or fiber) arrays. A method is presented, using which it is possible to determine experimentally the time dependence of the quantity \(\dot {m}(t)\) both at the initial stage of the plasma formation and at its final stage, when \(\dot {m}(t)\) → 0. In fact, by measuring the current Ip with a magnetic probe located inside the wire array near the surface of the wires, it is possible to find the current flowing in the plasma formation region Is as the difference between the total current through the liner and the current Ip. The time dependence Is(t) thus defined is nonmonotonic, and the quantity \(\dot {m}(t)\sim I_{s}^{2}\left( t \right)\) correspondingly decreases at the final stage of the implosion of the wire array. The intensity of the plasma formation of arrays made form wires and fibers of different substances (Al, Cu, Mo, W, Bi, and kapron) was determined in experiments at the Angara-5-1 facility, the decay rate of this quantity at the stage of the plasma formation termination and its effect on the pulse and emission parameters were analyzed. The obtained results are compared with the data of the numerical MHD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

REFERENCES

  1. T. C. Sangster, R. L. McCrory, V. N. Goncharov, D. R. Harding, S. J. Loucks, P. W. McKenty, D. D. Meyerhofer, S. Skupsky, B. Yaakobi, B. J. MacGowan, L. J. Atherton, B. A. Hammel, J. D. Lindl, E. I. Moses, J. L. Porter, et al., Nucl. Fusion 47, 686 (2007).

    Article  Google Scholar 

  2. C. Olson, G. Rochau, S. Slutz, C. Morrow, R. Olson, M. Cuneo, D. Hanson, G. Bennett, T. Sanford, J. Bailey, W. Stygar, R. Vesey, T. Mehlhorn, K. Struve, M. Mazarakis, et al., Fusion Sci. Technol. 47, 633 (2005).

    Article  Google Scholar 

  3. G. A. Rochau, J. E. Bailey, R. E. Falcon, G. P. Loisel, T. Nagayama, R. C. Mancini, I. Hall, D. E. Winget, M. H. Montgomery, and D. A. Liedahl, Phys. Plasmas 21, 056308 (2014).

  4. J. E. Bailey, T. Nagayama, G. P. Loisel, G. A. Rochau, C. Blancard, J. Colgan, P. Cosse, G. Faussurier, C. J. Fontes, F. Gilleron, I. Golovkin, S. B. Hansen, C. A. Iglesias, D. P. Kilcrease, J. J. MacFarlane, et al., Nature 517, 56 (2015).

    Article  ADS  Google Scholar 

  5. E. V. Grabovski, P. V. Sasorov, A. P. Shevelko, V. V. Aleksandrov, S. N. Andreev, M. M. Basko, A. V. Branitski, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, A. A. Samokhin, V. P. Smirnov, I. Yu. Tolstikhina, et al., Matter Radiat. Extremes 2, 129 (2017).

    Google Scholar 

  6. E. V. Grabovski, P. V. Sasorov, A. P. Shevelko, V. V. Alexandrov, S. N. Andreev, M. M. Basko, A. V. Branitski, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, V. G. Novikov, G. M. Oleinik, A. A. Samokhin, V. P. Smirnov, et al., JETP Lett. 103, 350 (2016).

    Article  ADS  Google Scholar 

  7. K. N. Mitrofanov, V. V. Alexandrov, E. V. Grabovski, A. N. Gritsuk, I. N. Frolov, A. V. Branitsky, and Ya. N. Laukhin, Plasma Phys. Rep. 43, 444 (2017).

    Article  ADS  Google Scholar 

  8. M. C. Jones, D. J. Ampleford, M. E. Cuneo, R. Hohlfelder, C. A. Jennings, D. W. Johnson, B. Jones, M. R. Lopez, J. MacArthur, J. A. Mills, T. Preston, G. A. Rochau, M. Savage, D. Spencer, D. B. Sinars, et al., Rev. Sci. Instrum. 85, 083501 (2014).

  9. M. G. Mazarakis, M. E. Cuneo, W. A. Stygar, H. C. Harjes, D. B. Sinars, B. M. Jones, C. Deeney, E. M. Waisman, T. J. Nash, K. W. Struve, and D. H. McDaniel, Phys. Rev. E 79, 016412 (2009).

  10. V. V. Alexandrov, G. S. Volkov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, K. N. Mitrofanov, G. M. Oleinik, I. N. Frolov, V. A. Barsuk, S. F. Medovshchikov, and P. V. Sasorov, Plasma Phys. Rep. 38, 315 (2012).

    Article  ADS  Google Scholar 

  11. C. L. Ruiz, G. W. Cooper, S. A. Slutz, J. E. Bailey, G. A. Chandler, T. J. Nash, T. A. Mehlhorn, R. J. Leeper, D. Fehl, A. J. Nelson, J. Franklin, and L. Ziegler, Phys. Rev. Lett. 93, 015001 (2004).

  12. R. J. Leeper, C. L. Ruiz, G. W. Cooper, S. A. Slutz, J. E. Bailey, G. A. Chandler, T. J. Nash, T. A. Mehlhorn, D. L. Fehl, K. Peterson, G. A. Rochau, W. A. Varnum, K. S. Bell, D. T. Casey, A. J. Nelson, et al., J. Phys. IV France 133, 775 (2006).

  13. M. K. Matzen, M. A. Sweeney, R. G. Adams, J. R. Asay, J. E. Bailey, G. R. Bennett, D. E. Bliss, D. D. Bloomquist, T. A. Brunner, R. B. Campbell, G. A. Chandler, C. A. Coverdale, M. E. Cuneo, J. P. Davis, C. Deeney, et al., Phys. Plasmas 12, 055503 (2005).

  14. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).

    Article  ADS  Google Scholar 

  15. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, et al., Phys. Rev. E 71, 046406 (2005).

  16. V. V. Alexandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 99 (2001).

    ADS  Google Scholar 

  17. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  18. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, E. V. Gra-bovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, G. S. Volkov, M. V. Zurin, and G. G. Zukakishvili, IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  19. E. P. Yu, B. V. Oliver, D. B. Sinars, T. A. Mehlhorn, M. E. Cuneo, P. V. Sasorov, M. G. Haines, and S. V. Lebedev, Phys. Plasmas 14, 022705 (2007).

  20. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, J. B. Greenly, Y. S. Dimant, and D. A. Hammer, Phys. Rev. Lett. 83, 4313 (1999).

    Article  ADS  Google Scholar 

  21. G. S. Sarkisov, B. S. Bauer, and J. S. De Groot, JETP Letters 73, 74 (2001).

    Article  ADS  Google Scholar 

  22. G. S. Sarkisov, P. V. Sasorov, K. W. Struve, and D. H. McDaniel, J. Appl. Phys. 96, 1674 (2004).

    Article  ADS  Google Scholar 

  23. V. V. Aleksandrov, E. V. Grabovsky, M. V. Zurin, I. V. Krasovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, J. Exp. Theor. Phys. 99, 1150 (2004).

    Article  ADS  Google Scholar 

  24. E. V. Grabovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, and I. N. Frolov, Contrib. Plasma Phys. 45, 553 (2005).

    Article  ADS  Google Scholar 

  25. V. V. Zhakhovsky, S. A. Pikuz, S. I. Tkachenko, P. V. Sasorov, T. A. Shelkovenko, P. F. Knapp, Ch. C. Saylor, and D. A. Hammer, AIP Conf. Proc. 1426, 1207 (2012).

    Article  ADS  Google Scholar 

  26. S. V. Lebedev, I. H. Mitchell, R. Aliaga-Rossel, S. N. Bland, J. P. Chittenden, A. E. Dangor, and M. G. Haines, Phys. Rev. Lett. 81, 4152 (1998).

    Article  ADS  Google Scholar 

  27. V. V. Aleksandrov, A. G. Alekseev, V. N. Amosov, M. M. Basko, G. S. Volkov, E. V. Grabovskii, A. V. Krasil’nikov, G. M. Oleinik, I. N. Rastyagaev, P. V. Sasorov, A. A. Samokhin, V. P. Smirnov, and I. N. Frolov, Plasma Phys. Rep. 29, 1034 (2003).

    Article  ADS  Google Scholar 

  28. T. A. Shelkovenko, S. A. Pikuz, J. D. Douglass, I. C. Blesener, J. B. Greenly, R. D. McBride, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 14, 102702 (2007).

  29. V. V. Aleksandrov, K. N. Mitofanov, A. N. Gritsuk, I. N. Frolov, E. V. Grabovski, and Ya. N. Laukhin, Plasma Phys. Rep. 39, 809 (2013).

    Article  ADS  Google Scholar 

  30. V. V. Aleksandrov, A. V. Branitski, V. A. Gasilov, E. V. Grabovskiy, A. N. Gritsuk, K. N. Mitrofanov, O. G. Olkhovskaya, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Control. Fusion 61, 035009 (2019).

  31. V. V. Alexandrov, V. E. Fortov, I. N. Frolov, E. V. Grabovskii, I. K. Krasuk, I. V. Lomonosov, K. N. Mitofanov, P. P. Pashinin, A. Yu. Semenov, V. P. Smirnov, G. M. Oleinik, I. Yu. Porofeev, V. I. Vovchenko, and G. G. Zukakishvili, in Proceedings of the 13th International Conference on High-Power Particle Beams, Nagaoka, 2000, Vol. 1, p. 142.

  32. G. G. Zukakishvili, K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovskii, G. M. Oleinik, I. Yu. Porofeev, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 31, 908 (2005).

    Article  ADS  Google Scholar 

  33. I. K. Aivazov, V. D. Vikharev, G. S. Volkov, L. B. Nikandrov, V. P. Smirnov, and V. Ya. Tsarfin, Plasma Phys. Rep. 14, 110 (1988).

    Google Scholar 

  34. M. B. Bekhtev, V. D. Vikharev, S. V. Zakharov, V. P. Smirnov, M. V. Tulupov, and V. Ya. Tsarfin, Sov. Phys.–JETP 68, 955 (1989).

    Google Scholar 

  35. I. K. Aivazov, M. B. Bekhtev, V. V. Bulan, A. N. Bulatov, V. D. Vikharev, G. S. Volkov, E. V. Grabovskii, V. P. Gigiberiya, V. V. Zazhivikhin, V. I. Zaitsev, S. V. Zakharov, V. P. Zolotov, E. V. Znatnov, S. A. Komarov, R. S. Konkashbaeva, et al., Plasma Phys. Rep. 16, 373 (1990).

    Google Scholar 

  36. N. A. Bobrova, T. L. Razinkova, and P. V. Sasorov, Plasma Phys. Rep. 14, 617 (1988).

    Google Scholar 

  37. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  38. K. N. Mitrofanov, E. V. Grabovski, G. M. Oleinik, V. V. Aleksandrov, A. N. Gritsuk, I. N. Frolov, Ya. N. Laukhin, P. V. Sasorov, and A. A. Samokhin, Plasma Phys. Rep. 38, 797 (2012).

    Article  ADS  Google Scholar 

  39. K. N. Mitrofanov, V. V. Aleksandrov, A. N. Gritsuk, E. V. Grabovski, I. N. Frolov, Ya.N. Laukhin, and S. S. Breshkov, Plasma Phys. Rep. 43, 141 (2017).

    Article  ADS  Google Scholar 

  40. P. Sasorov, in Proceedings of the 15th International Conference on High-Power Particle Beams, St. Petersburg, 2004, p. 734.

  41. P. Sasorov, in Proceedings of the 6th International Conference on Dense Z-Pinches, Oxford, 2005, AIP Conf. Proc. 808, 81 (2005).

  42. P. V. Sasorov, B. V. Oliver, E. P. Yu, and T. A. Mehlhorn, Phys. Plasmas 15, 022702 (2008).

  43. E. V. Grabovski, V. V. Aleksandrov, G. S. Volkov, V. A. Gasilov, A. N. Gribov, A. N. Gritsuk, S. V. D’yachenko, V. I. Zaitsev, S. F. Medovshchikov, K. N. Mitrofanov, Ya. N. Laukhin, G. M. Oleinik, O. G. Ol’-khovskaya, A. A. Samokhin, P. V. Sasorov, et al., Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  44. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, E. A. Ptichkina, A. N. Gritsuk, G. M. Oleinik, I. N. Frolov, and Ya. N. Laukhin, Plasma Phys. Rep. 40, 679 (2014).

    Article  ADS  Google Scholar 

  45. V. V. Aleksandrov, E. V. Grabovskii, K. N. Mitrofanov, G M. Oleinik, V. P. Smirnov, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 30, 568 (2004).

    Article  ADS  Google Scholar 

  46. K. N. Mitrofanov, Doctoral Dissertation in Physics and Mathematics (Lebedev Physical Institute, Moscow, 2019), p. 118.

  47. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovskii, G. M. Gryaznov, O. A. Gusev, G. N. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68, 26 (1990).

    Google Scholar 

  48. K. N. Mitrofanov, V. I. Krauz, E. V. Grabovski, V. V. Myalton, M. Padukh, and A. N. Gritsuk, Instrum. Exp. Tech. 61, 239 (2018).

    Article  Google Scholar 

  49. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, G. M. Oleinik, I. N. Frolov, Ya. N. Laukhin, and A. A. Samokhin, Plasma Phys. Rep. 40, 323 (2014).

    Article  ADS  Google Scholar 

  50. G. S. Volkov, E. V. Grabovskii, M. V. Zurin, K. N. Mitrofanov, G. M. Oleinik, and I. Yu. Porofeev, Instrum. Exp. Tech. 47, 201 (2004).

    Article  Google Scholar 

  51. S. I. Tkachenko, A. R. Mingaleev, V. M. Romanova, A. E. Ter-Oganes’yan, T. A. Shelkovenko, and S. A. Pikuz, Plasma Phys. Rep. 35, 734 (2009).

    Article  ADS  Google Scholar 

  52. V. V. Aleksandrov, V. A. Barsuk, E. V. Grabovski, A. N. Gritsuk, G. G. Zukakishvili, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, and P. V. Sasorov, Plasma Phys. Rep. 35, 200 (2009).

    Article  ADS  Google Scholar 

  53. J. D. Douglass, D. A. Hammer, S. A. Pikuz, T. A. Shelkovenko, and K. S. Blesener, Phys. Plasmas 19, 072710 (2012).

  54. P. V. Sasorov, in Proceedings of the 35th IEEE International Conference on Plasma Science, Karlsruhe, 2008, p. 1. https://doi.org/10.1109/PLASMA.2008.4590765

  55. E. V. Grabovskii, K. N. Mitrofanov, G. M. Oleinik, and I. Yu. Porofeev, Plasma Phys. Rep. 30, 121 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the team of the Angara-5-1 facility for the engineering and technical support of experiments, and also to the project High Field Initiative [CZ.02.1.01/0.0/ 0.0/15_003/0000449] from the European Regional Development Fund.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 20-02-00007, 18-29-21005, 18-02-00170, and 20-31-70015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, K.N., Aleksandrov, V.V., Grabovsky, E.V. et al. Study of the Time Dependence of the Plasma Formation Intensity at the Current Implosion of Cylindrical Wire and Fiber Arrays from Different Substances. Plasma Phys. Rep. 46, 1150–1180 (2020). https://doi.org/10.1134/S1063780X20110069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20110069

Keywords:

Navigation