Skip to main content
Log in

Formation of a Density Bump in a Collisionless Electrostatic Shock Wave During Expansion of a Hot Dense Plasma into a Cold Rarefied One

  • LASER PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Formation and evolution of a density bump in an electrostatic shock wave during decay of a discontinuity in a plasma characterized by the presence of hot electrons and a large drop in plasma density across the discontinuity are investigated. Numerical particle-in-cell simulation in a wide range of plasma parameters revealed that the appearance of the density bump as a result of the action of the electric field of high-energy electrons in the region of the travelling shock front changes the character of generated ion–acoustic waves and is accompanied by complex nonlaminar kinetics of different fractions of accelerated and thermal ions, including those reflected from the front. Investigation of particle trajectories in real and phase spaces unveiled that ions on both sides of the discontinuity, namely, ions of the rarefied plasma captured by the wave and accelerated ions of the dense plasma catching it up, participate in formation and sustaining of the density bump in the shock wave. A qualitative analysis of contributions of both ion components to the density bump is carried out, and specific features of the latter for typical parameters of laser plasma are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFEENCES

  1. S. S. Moiseev and R. Z. Sagdeev, J. Nucl. Energy, Part C 5, 43 (1963).

    Article  ADS  Google Scholar 

  2. V. L. Krasovsky, H. Matsumoto, and Y. Omura, J. Geophys. Res.: Space Phys. 108 (A3), 1117 (2003). https://doi.org/10.1029/2001JA000277

    Article  ADS  Google Scholar 

  3. A. Balogh and R. Treumann, Physics of Collisionless Shocks: Space Plasma Shock Waves (Springer, New York 2013). https://doi.org/10.1007/978-1-4614-6099-2

    Book  Google Scholar 

  4. T. N. Kato and H. Takabe, Phys. Plasmas 17, 032114 (2010). https://doi.org/10.1063/1.3372138

  5. G. Sarri, G. C. Murphy, M. E. Dieckmann, A. Bret, K. Quinn, I. Kourakis, M. Borghesi, L. O. C. Drury, and A. Ynnerman, New J. Phys. 13, 073023 (2011).

  6. H. Ahmed, M. E. Dieckmann, L. Romagnani, H. Ahmed, M. E. Dieckmann, L. Romagnani, D. Doria, G. Sarri, M. Cerchez, E. Ianni, I. Kourakis, A. L. Gie-secke, M. Notley, R. Prasad, K. Quinn, et al., Phys. Rev. Lett. 110, 205001 (2013).

  7. Yu. V. Medvedev, Nonlinear Phenomena during Discontinuity Decay in Rarefied Plasma (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  8. L. A. Artsimovich and R. Z. Sagdeev, Plasma Physics for Physicists (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  9. S. Sultana, G. Sarri, and I. Kourakis, Phys. Plasmas 19, 012310 (2012).

  10. E. J. Choi, K. Min, K.-I. Nishikawa, and C. R. Choi, Phys. Plasmas 21, 072905 (2014).

  11. A. V. Gurevich and A. P. Meshcherkin, Sov. Phys.-JETP 54, 688 (1981).

    Google Scholar 

  12. A. V. Gurevich and A. P. Meshcherkin, Sov. Phys.-JETP 60, 732 (1984).

    Google Scholar 

  13. M. A. Malkov, R. Z. Sagdeev, G. I. Dudnikova, T. V. Liseykina, P. H. Diamond, K. Papadopoulos, C.‑S. Liu, and J. J. Su, Phys. Plasmas 23, 043105 (2016). https://doi.org/10.1063/1.4945649

  14. Plasma Electrodynamics, Ed. by A. I. Akhiezer (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  15. M. V. Nezlin, Dynamics of Beams in Plasma (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  16. R. C. Davidson, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983), Vol. 1, p. 521.

    Google Scholar 

  17. Q. Moreno, M. E. Dieckmann, D. Folini, R. Walder, X. Ribeyre, V. T. Tikhonchuk, and E. d’Humières, Plasma Phys. Controlled Fusion 62, 025022 (2020).

  18. W.-S. Zhang, H.-B. Cai, and S.-P. Zhu, Plasma Phys. Controlled Fusion 60, 055001 (2018). https://doi.org/10.1088/1361-6587/aab175

  19. C. Thaury, P. Mora, A. Heron, and J. C. Adam, Phys. Rev. E 82, 016408 (2010). https://doi.org/10.1103/PhysRevE.82.016408

  20. V. V. Kocharovskiiy, Vl. V. Kocharovsky, V. Yu. Mart’yanov, and S. V. Tarasov, Phys.–Usp. 59, 1165 (2016).

    Article  Google Scholar 

  21. L. V. Borodachev, M. A. Garasev, D. O. Kolomiets, V. V. Kocharovsky, V. Yu. Mart’yanov, and A. A. Nechaev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 59, 1107 (2016).

    Google Scholar 

  22. A. Stepanov, M. Garasev, A. Korytin, Vl. Kocharovsky, Yu. Mal’kov, A. Murzanev, A. Nechaev, and D. Yashunin, in Proceedings of the 17th International Conference “Laser Optics 2016,” St. Petersburg,2016, Paper R5-5. https://doi.org/10.1109/LO.2016.7549793.

  23. M. A. Garasev, A. I. Korytin, V. V. Kocharovsky, Yu. A. Mal’kov, A. A. Murzanev, A. A. Nechaev, and A. N. Stepanov, JETP Lett. 105, 164 (2017).

    Article  ADS  Google Scholar 

  24. L. Romagnani, S. V. Bulanov, M. Borghesi, P. Audebert, J. C. Gauthier, K. Löwenbrück, A. J. Mackinnon, P. Patel, G. Pretzler, T. Toncian, and O. Willi, Phys. Rev. Lett. 101, 025004 (2008). https://doi.org/10.1103/PhysRevLett.101.025004

  25. K. A. Ivanov, S. A. Shulyapov, P. A. Ksenofontov, I. N. Tsymbalov, R. V. Volkov, A. B. Savel’ev, A. V. Brantov, V. Yu. Bychenkov, A. A. Turinge, A. M. Lapik, A. V. Rusakov, R. M. Djilkibaev, and V. G. Nedorezov, Phys. Plasmas 21, 093110 (2014).

  26. S.-K. He, J.-L. Jiao, Z.-G. Deng, F. Lu, L. Yang, F.‑Q. Zhang, K.-D. Dong, W. Hong, Z.-M. Zhang, B. Zhang, J. Teng, W.-M. Zhou, and Y.-Q. Gu, Chin. Phys. Lett. 36, 105201 (2019). https://doi.org/10.1088/0256-307x/36/10/105201

  27. M. Chen, Z.-M. Sheng, Q.-L. Dong, M.-Q. He, Y.‑T. Li, M. A. Bari, and J. Zhang, Phys. Plasmas 14, 053102 (2007). https://doi.org/10.1063/1.2722723

  28. C. Ruyer, L. Gremillet, and G. Bonnaud, Phys. Plasmas 22, 082107 (2015). https://doi.org/10.1063/1.4928096

  29. M. E. Dieckmann, D. Doria, H. Ahmed, L. Romagnani, G. Sarri, D. Folini, R. Walder, A. Bret, and M. Borghesi, Phys. Plasmas 24, 094501 (2017). https://doi.org/10.1063/1.4991694

  30. W. Fox, J. Matteucci, C. Moissard, D. B. Schaeffer, A. Bhattacharjee, K. Germaschewski, and S. X. Hu, Phys. Plasmas 25, 102106 (2018). https://doi.org/10.1063/1.5050813

  31. J. Schou, S. Amoruso, and J. G. Lunney, Laser Ablation and its Applications, Ed. by C. Phipps (Springer Nature Switzerland, Basel, 2007). https://doi.org/10.1007/978-0-387-30453-3

    Book  Google Scholar 

  32. O. B. Anan’in, Yu. V. Afanas’ev, Yu. A. Bykovskii, and O. N. Krokhin, Laser Plasma (MIFI, Moscow, 2003) [in Russian].

    Google Scholar 

  33. T.-H. Tan and J. E. Borovsky, J. Plasma Phys. 35, 239 (1986).

    Article  ADS  Google Scholar 

  34. N. C. Woolsey, Y. Abou Ali, R. G. Evans, R. A. D. Grundy, S. J. Pestehe, P. G. Carolan, N. J. Conway, R. O. Dendy, P. Helander, K. G. McClements, J. G. Kirk, P. A. Norreys, M. M. Notley, and S. J. Rose, Phys. Plasmas 8, 2439 (2001).

    Article  ADS  Google Scholar 

  35. Y. Medvedev, Plasma Phys. Controlled Fusion 56, 025005 (2014).

  36. E. Boella, F. Fiúza, A. Stockem Novo, R. Fonseca, and L. O. Silva, Plasma Phys. Controlled Fusion 60, 035010 (2018). https://doi.org/10.1088/1361-6587/aaa556

  37. M. Perego, P. D. Howell, M. D. Gunzburger, J. R. Ockendon, and J. E. Allen, Phys. Plasmas 20, 052101 (2013). https://doi.org/10.1063/1.4802933

  38. T. V. Liseykina, G. I. Dudnikova, V. A. Vshivkov, and M. A. Malkov, J. Plasma Phys. 81, 495810507 (2015). https://doi.org/10.1017/S002237781500077X

  39. R. A. Cairns, R. Bingham, P. Norreys, and R. Trines, Phys. Plasmas 21, 022112 (2014). https://doi.org/10.1063/1.4864328

  40. R. A. Cairns, R. Bingham, R. Trines, and P. Norreys, Plasma Phys. Controlled Fusion 57, 044008 (2015). https://doi.org/10.1088/0741-3335/57/4/044008

  41. I. Pusztai, J. M. TenBarge, A. N. Csapó, J. Juno, A. Hakim, L. Yi, and T. Fülöp, Plasma Phys. Controlled Fusion 60, 035004 (2018). https://doi.org/10.1088/1361-6587/aaa2cc

  42. I. R. Smirnovskii, Plasma Phys. Rep. 26, 225 (2000). https://doi.org/10.1134/1.952842

    Article  ADS  Google Scholar 

  43. W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics. Revised ed. (Imperial College Press, London, 2012).

    Book  Google Scholar 

  44. R. A. Treumann, Astron. Astrophys. Rev. 17, 409 (2009). https://doi.org/10.1007/s00159-009-0024-2

    Article  ADS  Google Scholar 

  45. A. Marcowith, A. Bret, A. Bykov, M. E. Dieckman, L. O’C. Drury, B. Lembêge, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, and A. Stockem Novo, Rep. Prog. Phys. 79, 046901 (2016). https://doi.org/10.1088/0034-4885/79/4/046901

  46. A. Bret, J. Plasma Phys. 81, 455810202 (2015). https://doi.org/10.1017/S0022377815000173

  47. P. Mora and T. Grismayer, Phys. Rev. Lett. 102, 145001 (2009).

  48. J. E. Allen and M. Perego, Phys. Plasmas 21, 034504 (2014). https://doi.org/10.1063/1.4870084

  49. D. S. Dorozhkina and V. E. Semenov, JETP Lett. 67, 573 (1998).

    Article  ADS  Google Scholar 

  50. D. S. Dorozhkina and V. E. Semenov, J. Exp. Theor. Phys. 89, 468 (1999).

    Article  ADS  Google Scholar 

  51. S. Zhou, Y. Bai, Y. Tian, H. Sun, L. Cao, and J. Liu, Phys. Rev. Lett. 121, 255002 (2018). https://doi.org/10.1103/PhysRevLett.121.255002

  52. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Plasma Phys. Controlled Fusion 57, 113001 (2015).

  53. T. Grismayer and P. Mora, Phys. Plasmas 13, 032103 (2006). https://doi.org/10.1063/1.2178653

  54. Y. Hu and J. Wang, IEEE Trans. Plasma Sci. 43, 2832 (2015).

    Article  ADS  Google Scholar 

  55. A. Diaw and P. Mora, EPJ Web Conf. 59, 17009 (2013).

  56. K. M. Schoeffler, N. F. Loureiro, R. A. Fonseca, and L. O. Silva, Phys. Plasmas 23, 056304 (2016). https://doi.org/10.1063/1.4946017

  57. A. N. Stepanov, M. A. Garasev, V. V. Kocharovsky, A. I. Korytin, Yu. A. Mal’kov, A. A. Murzanev, and A. A. Nechaev, in Proceedings of the 18th International Conference “Laser Optics 2018,” St. Petersburg,2018, p. 242. https://doi.org/10.1109/LO.2018.8435840

  58. A. Stockem, T. Grismayer, R. A. Fonseca, and L. O. Silva, Phys. Rev. Lett. 113, 105002 (2014).

Download references

Funding

Research carried out by A. A. Nechaev, related mainly to Sections 3–5, was supported by the Russian Foundation for Basic Research (project no. 18-32-01065). Adaptation of the EPOCH software for simulation of plasma expansion (Section 2) conducted by M. A. Garasev was supported by the “BASIS” Foundation (project no. 17-14-403-1). Research conducted by A.N. Stepanov and V.V. Kocha-rovsky related to choosing parameters of simulation and comparison of its results, those related to magnetic field generation (Section 6) in the first place, with the experimental data was supported by the Russian Foundation for Basic Research (project no. 18-29-21029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nechaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaev, A.A., Garasev, M.A., Stepanov, A.N. et al. Formation of a Density Bump in a Collisionless Electrostatic Shock Wave During Expansion of a Hot Dense Plasma into a Cold Rarefied One. Plasma Phys. Rep. 46, 765–783 (2020). https://doi.org/10.1134/S1063780X2008005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2008005X

Keywords:

Navigation