Skip to main content
Log in

First Globus-M2 Results

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Globus-M2—a new 1-Tesla spherical tokamak—was recently launched. The main features and research directions of this machine in scope of fusion–fission reactor development are described. Main results of the first experimental campaign with toroidal magnetic field up to 0.73 T and plasma current up to 0.33 MA are discussed. Significant improvement of the discharge parameters as compared to Globus-M was achieved. Plasma total stored energy higher than 7 kJ was obtained. Energy confinement time increase was consistent with predictions by spherical tokamak scalings. Toroidal Alfvén eigenmode-induced losses decrease with increase of plasma current and toroidal magnetic field. For the first time, LHCD with the toroidal wave slowing-down was successfully used at a spherical tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017).

  2. V. K. Gusev, N. N. Bakharev, V. A. Belyakov, B. Ya. Ber, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, E. V. Demina, V. V. Dyachenko, P. R. Goncharov, A. E. Gorodetsky, E. Z. Gusakov, A. D. Iblyaminova, A. A. Ivanov, et al., Nucl. Fusion 55, 104016 (2015).

  3. V. K. Gusev, E. A. Azizov, A. B. Alekseev, A. F. Arneman, N. N. Bakharev, V. A. Belyakov, S. E. Bender, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, I. N. Chugunov, V. V. Dyachenko, O. G. Filatov, A. D. Iblyaminova, et al., Nucl. Fusion 53, 093013 (2013).

  4. V. K. Gusev, N. N. Bakharev, B. Ya. Ber, V. V. Bulanin, F. V. Chernyshev, V. V. Dyachenko, P. R. Goncharov, E. Z. Gusakov, A. D. Iblyaminova, M. A. Irzak, E. G. Kaveeva, S. A. Khitrov, N. A. Khromov, V. A. Kornev, G. S. Kurskiev, et al., Plasma Phys. Controlled Fusion 58, 014032 (2016).

  5. N. N. Bakharev, V. V. Bulanin, F. V. Chernyshev, V. K. Gusev, N. A. Khromov, E. O. Kiselev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, et al., Nucl. Fusion 58, 126029 (2018).

  6. A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, F. V. Chernyshev, and I. V. Shystov, Sov. Phys.–Tech. Phys. 37, 201 (1992).

    Google Scholar 

  7. E. A. Tukhmeneva, S. Yu. Tolstyakov, G. S. Kurskiev, V. K. Gusev, V. B. Minaev, Yu. V. Petrov, N. V. Sakharov, A. Yu. Telnova, N. N. Bakharev, P. B. Shchegolev, and E. O. Kiselev, Plasma Sci. Technol. 21, 105104 (2019).

  8. V. V. Bulanin, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, A. V. Petrov, M. A. Petrov, Yu. V. Petrov, A. Yu. Telnova, and A. Yu. Yashin, Tech. Phys. Lett. 43, 1067 (2017).

    Article  ADS  Google Scholar 

  9. G. F. Avdeeva, I. V. Miroshnikov, N. N. Bakharev, G. S. Kurskiev, M. I. Patrov, V. Yu. Sergeev, and P. B. Schegolev, J. Phys.: Conf. Ser. 666, 012002 (2016).

  10. V. A. Tokarev, V. K. Gusev, N. A. Khromov, M. I. Patrov, Yu. V. Petrov, and V. I. Varfalomeev, J. Phys.: Conf. Ser. 1094, 012003 (2018).

  11. P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, N. N. Bakharev, P. R. Goncharov, V. K. Gusev, G. S. Kurskiev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, I. V. Shikhovtsev, and S. Yu. Tolstyakov, J. Phys.: Conf. Ser. 907, 012013 (2017).

  12. O. N. Shcherbinin, V. V. D’yachenko, V. K. Gusev, V. I. Varfolomeev, Yu. V. Petrov, and N. V. Sakharov, Tech. Phys. Lett. 38, 869 (2012).

    Article  ADS  Google Scholar 

  13. V. V. Dyachenko, O. N. Shcherbinin, E. Z. Gusakov, V. K. Gusev, M. A. Irzak, G. S. Kurskiev, Yu. V. Petrov, A. N. Saveliev, N. V. Sakharov, S. A. Khitrov, N. A. Khromov, V. I. Varfolomeev, and A. V. Voronin, Nucl. Fusion 55, 113001 (2015).

  14. P. B. Shchegolev, V. B. Minaev, N. N. Bakharev, V. K. Gusev, E. O. Kiselev, G. S. Kurskiev, M. I. Patrov, Yu. V. Petrov, and A. Yu. Telnova, Plasma Phys. Rep. 45,195 (2019).

    Article  ADS  Google Scholar 

  15. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, N. N. Bakharev, A. D. Iblyaminova, P. B. Shchegolev, G. F. Avdeeva, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, and S. Yu. Tolstyakov, Plasma Phys. Controlled Fusion 59, 045010 (2017).

  16. G. S. Kurskiev, N. N. Bakharev, V. V. Bulanin, F. V. Chernyshev, V. K. Gusev, N. A. Khromov, E. O. Kiselev, V. B. Minaev, I. V. Miroshnikov, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, et al., Nucl. Fusion 59, 066032 (2019).

  17. A. Yu. Telnova, G. S. Kurskiev, E. O. Kiselev, N. N. Bakharev, V. K. Gusev, N. A. Khromov, S. Yu. Medvedev, V. B. Minaev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, A. D. Sladkomedova, P. B. Shchegolev, V. V. Solokha, et al., Plasma Sci. Technol. 21, 115101 (2019).

  18. A. Yu. Tel’nova, G. S. Kurskiev, I. V. Miroshnikov, G. F. Avdeeva, N. N. Bakharev, V. K. Gusev, V. B. Minaev, A. D. Mel’nik, Yu. V. Petrov, N. V. Sakharov, F. V. Chernyshev, and P. B. Shchegolev, Tech. Phys. Lett. 44, 700 (2018).

    Article  ADS  Google Scholar 

  19. Yu. V. Petrov, N. N. Bakharev, V. K. Gusev, V. B. Minaev, V. A. Kornev, G. S. Kurskiev, M. I. Patrov, N. V. Sakharov, S. Yu. Tolstyakov, and P. B. Shchegolev, J. Plasma Phys. 81, 515810601 (2015).

  20. Yu. V. Petrov, N. N. Bakharev, V. K. Gusev, V. B. Minaev, V. A. Kornev, A. D. Mel’nik, M. I. Patrov, N. V. Sakharov, S. Yu. Tolstyakov, G. S. Kurskiev, F. V. Chernyshev, and P. B. Shchegolev, Tech. Phys. Lett. 40, 1136 (2014).

    Article  ADS  Google Scholar 

  21. N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V. K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov, et al., Nucl. Fusion 55, 043023 (2015).

  22. N. N. Bakharev, V. K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, S. Yu. Tolstyakov, N. A. Khromov, F. V. Chernyshev, P. B. Shchegolev, and F. Wagner, Tech. Phys. Lett. 39, 1085 (2013).

    Article  ADS  Google Scholar 

  23. V. K. Gusev, R. M. Aminov, A. A. Berezutskiy, V. V. Bulanin, F. V. Chernyshev, I. N. Chugunov, A. V. Dech, V. V. Dyachenko, A. E. Ivanov, S. A. Khitrov, N. A. Khromov, G. S. Kurskiev, M. M. Larionov, A. D. Melnik, V. B. Minaev, et al., Nucl. Fusion 51, 103019 (2011).

  24. I. Yu. Senichenkov, E. G. Kaveeva, A. V. Gogoleva, E. O. Vekshina, G. V. Zadvitskiy, P. A. Molchanov, V. A. Rozhansky, S. P. Voskoboynikov, N. A. Khromov, S. A. Lepikhov, V. K. Gusev, and the Globus-M Team, Nucl. Fusion 55, 053012 (2015).

  25. V. A. Tokarev, V. K. Gusev, N. A. Khromov, M. I. Patrov, Yu. V. Petrov, and V. I. Varfalomeev, J. Phys.: Conf. Ser. 1094, 012003 (2018).

  26. R. Zalavutdinov, A. Novokhatsky, V. Gusev, V. Bukhovets, A. Gorodetsky, V. Kuznetsov, N. Litunovsky, A. Makhankov, I. Mazul, and E. Mukhin, Phys. Scr. 2017, 014043 (2017).

  27. A. D. Sladkomedova, A. G. Alekseev, N. N. Bakharev, V. K. Gusev, N. A. Khromov, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, V. V. Solokha, A. Yu. Telnova, S. Yu. Tolstyakov, and V. V. Zabrodsky, Rev. Sci. Instrum. 89, 083509 (2018).

  28. A. V. Voronin, N. N. Bakharev, V. K. Gusev, A. N. Novokhatskii, and S. A. Ponyaev, Tech. Phys. 63, 670 (2018).

    Article  Google Scholar 

  29. N. V. Sakharov, V. K. Gusev, A. A. Kavin, S. N. Kamenshchikov, K. M. Lobanov, A. B. Mineev, M. I. Patrov, and Yu. V. Petrov, Plasma Phys. Rep. 44, 387 (2018).

    Article  ADS  Google Scholar 

  30. M. Valovič, R. Akers, G. Cunningham, L. Garzotti, B. Lloyd, D. Muir, A. Patel, D. Taylor, M. Turnyanskiy, M. Walsh, and the MAST team, Nucl. Fusion 49, 075016 (2009).

  31. S. M. Kaye, M. G. Bell, R. E. Bell, E. D. Fredrickson, B. P. LeBlanc, K. C. Lee, S. Lynch, and S. A. Sabbagh, Nucl. Fusion 46, 848 (2006).

    Article  ADS  Google Scholar 

  32. ITER Physics Basis Expert Groups on Confinement and Transport and Confinement Modelling and Database, ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999).

  33. N. N. Bakharev, V. V. Bulanin, F. V. Chernyshev, V. K. Gusev, N. A. Khromov, E. O. Kiselev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, I. V. Miroshnikov, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, et al., Nucl. Fusion 58, 126029 (2018).

  34. Y. Peysson and the TORE SUPRA Team, Plasma Phys. Controlled Fusion 42, Suppl., B87 (2000).

    Article  ADS  Google Scholar 

  35. T. Watari, Plasma Phys. Controlled Fusion 35, A181 (1993).

    Article  ADS  Google Scholar 

  36. E. Z. Gusakov, M. A. Irzak, and A. D. Piliya, JETP Lett. 65, 25 (1997).

    Article  ADS  Google Scholar 

  37. S. M. Kaye, D. J. Battaglia, D. Baver, E. Belova, J. W. Berkery, V. N. Duarte, N. Ferraro, E. Fredrickson, N. Gorelenkov, W. Guttenfelder, G. Z. Hao, W. Heidbrink, O. Izacard, D. Kim, I. Krebs, et al., N-ucl. Fusion 59, 112007 (2019).

  38. J. R. Harrison, R. J. Akers, S. Y. Allan, J. S. Allcock, J. O. Allen, L. Appel, M. Barnes, N. Ben Ayed, W. Boeglin, C. Bowman, J. Bradley, P. Browning, P. Bryant, M. Carr, M. Cecconello, et al., Nucl. Fusion 59, 112011 (2019).

  39. J. E. Menard, R. Majeski, M. Ono, N. N. Bakharev, V. K. Gusev, M. Gryaznevich, D. Kingham, S. Mcnamara, P. Thomas, K. Hanada, J. Harrison, B. Lloyd, Y. S. Hwang, B. Lipschultz, H. Wilson, et al., in Proceedings of the 27th IAEA Fusion Energy Conference, Ahmedabad,2018, Paper IAEA-CN-258 OV/P-6.

Download references

Funding

The experiments were performed on the unique scientific device “Spherical tokamak Globus-M,” which is incorporated in the Federal Joint Research Center “Material science and characterization in advanced technology” (project ID RFMEFI62119X0021). Energy confinement study described in Section 2 was performed by E.O. Kiselev, G.S. Kurskiev, V.B. Minaev, N.V. Sakharov, P.B. Shchegolev, A.Yu. Telnova, and E.A. Tukhmeneva and financially supported by RSF research project no. 17-72-20076. Alfvén eigenmode study described in Section 3 was performed by V.K. Gusev and. Yu.V. Petrov and financially supported by RSF research project no. 17-12-01177. Equipment of the neutral particle analyzer with a scanning platform and energetic ion studies described in Section 1 were performed by N.N. Bakharev, A.D. Melnik, and V.A. Tokarev and funded by RFBR research project no. 18-32-20031. LHCD experiments described in Section 4 were performed within the framework of the State task of the Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bakharev.

Additional information

This manuscript is based on the AAPP 2019 report “Globus-M2 Experiments in Scope of Fusion–Fission Reactor Development.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakharev, N.N., Balachenkov, I.M., Chernyshev, F.V. et al. First Globus-M2 Results. Plasma Phys. Rep. 46, 675–682 (2020). https://doi.org/10.1134/S1063780X20070016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20070016

Keywords:

Navigation