Skip to main content
Log in

Anomalous Electron Transport in One-Dimensional Electron Cyclotron Drift Turbulence

  • PLASMA TURBULENCE
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The transverse electron current due to the crossed electric and magnetic fields results in the robust instability driven by the electron \({\mathbf{E}} \times {\mathbf{B}}\) drift. In the regime of interest for electric propulsion applications, this instability leads to the excitation of quasicoherent nonlinear wave resulting in the anomalous electron transport. We investigate the nonlinear stage of the instability and resulting anomalous electron current using nonlinear Particle-in-Cell simulations. It is found that the anomalous current is proportional to the applied electric field thus demonstrating constant anomalous mobility. Moreover, the scaling of the current density follows the dependence of the dominant resonance wavelength on the electric and magnetic field strength thus clearly demonstrating the cyclotron nature of the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. I. Arefev, A. V. Gordeev, and L. I. Rudakov, in Proceedings of the 3rd International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Novosibirsk,1968 (IAEA, Vienna, 1969), p. 143.

  2. V. I. Arefev, Sov. Phys. Tech. Phys. 14, 1487 (1970).

    ADS  Google Scholar 

  3. A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).

    Article  ADS  Google Scholar 

  4. V. I. Arefev and K. P. Kirdyashev, Sov. Phys. Tech. Phys. 20, 330 (1975).

    ADS  Google Scholar 

  5. J. P. Boeuf, J. Appl. Phys. 121, 011101 (2017).

  6. A. Hecimovic, J. Phys. D: Appl. Phys. 49, 18LT01 (2016).

    Article  Google Scholar 

  7. A. Hecimovic, V. Schulz-von der Gathen, M. Böke, A. von Keudell, and J. Winter, Plasma Sources Sci. Technol. 24, 045005 (2015).

    Article  ADS  Google Scholar 

  8. Y. V. Esipchuk and G. N. Tilinin, Sov. Phys. Tech. Phys. 21, 417 (1976).

    Google Scholar 

  9. V. Nikitin, D. Tomilin, A. Lovtsov, and A. Tarasov, EPL 117, 45001 (2017).

    Article  ADS  Google Scholar 

  10. A. I. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T. Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin, Plasma Phys. Control. Fusion, 59 014041 (2017).

  11. D. Tomilin, Phys. Plasmas 20, 042103 (2013).

  12. V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, E. A. Sorokina, and N. A. Marusov, Phys. Plasmas 25, 012107 (2018).

  13. V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, E. A. Sorokina, and N. A. Marusov, Phys. Plasmas 25, 012106 (2018).

  14. N. A. Marusov, E. A. Sorokina, V. P. Lakhin, V. I. Ilgisonis, and A. I. Smolyakov, Plasma Sources Sci. Technol. 28, 015002 (2019).

    Article  ADS  Google Scholar 

  15. A. A. Litvak and N. J. Fisch, Phys. Plasmas 8, 648 (2001).

    Article  ADS  Google Scholar 

  16. S. Chable and F. Rogier, Phys. Plasmas 12, 033504 (2005).

  17. S. P. Gary, Plasma Phys. Control. Fusion 15, 399 (1973).

    Article  Google Scholar 

  18. M. Lampe, W.M. Manheimer, J. B. McBride, and J. H. Orens, Phys. Fluids 15, 2356 (1972).

    Article  ADS  Google Scholar 

  19. D. W. Forslund, R. L. Morse, and C. W. Nielson, Phys. Rev. Lett. 25, 1266 (1970).

    Article  ADS  Google Scholar 

  20. J. C. Adam, A. Heron, and G. Laval, Phys. Plasmas 11, 295 (2004).

    Article  ADS  Google Scholar 

  21. S. P. Gary and D. Biskamp, J. Phys. A: Gen. Phys. 4, L27 (1971).

    Article  ADS  Google Scholar 

  22. D. Forslund, C. Nielson, R. Morse, and J. Fu, Phys. Fluids 15, 1303 (1972).

    Article  ADS  Google Scholar 

  23. M. Lampe, J. B. McBride, W. M. Manheimer, R. N. Sudan, R. Shanny, J. H. Orens, and K. Papadopolous, Phys. Fluids 15, 662 (1972).

    Article  ADS  Google Scholar 

  24. D. Biskamp and R. Chodura, Phys. Fluids 16, 893 (1973).

    Article  ADS  Google Scholar 

  25. A. A. Galeev and R. Z. Sagdeev, in Handbook of Plasma Physics: Supplement to Basic Plasma Physics, Vol. 2, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1984), p. 272.

    Google Scholar 

  26. T. Lafleur, S. D. Baalrud, and P. Chabert, Phys. Plasmas 23, 053502 (2016).

  27. T. Lafleur, S. D. Baalrud, and P. Chabert, Phys. Plasmas 23, 053503 (2016).

  28. P. J. Barrett, R. J. Taylor, J. M. Sellen, B. D. Fried, and C. F. Kennel, Phys. Rev. Lett. 28, 337 (1972).

    Article  ADS  Google Scholar 

  29. I. Katz, I. G. Mikellides, R. R. Hofer, and A. Lopez Ortega, in Proceedings of the 34th International Electric Propulsion Conference, Kobe,2015, Paper IEPC-2015-402.

  30. I. Katz, A. Lopez Ortega, B. Jorns, and I. G. Mikellides, AIAA Propulsion and Energy Forum, AIAA 2016-4534 (2016). https://doi.org/10.2514/6.2016-4534

  31. T. Lafleur, S. D. Baalrud, and P. Chabert, Plasma Sources Sci. Technol. 26, 024008 (2017).

    Article  ADS  Google Scholar 

  32. S. Janhunen, A. Smolyakov, O. Chapurin, D. Sydorenko, I. Kaganovich, and Y. Raitses, Phys. Plasmas 25, 011608 (2018).

  33. A. Ducrocq, J. C. Adam, A. Heron, and G. Laval, Phys. Plasmas 13, 102111 (2006).

  34. J. Cavalier, N. Lemoine, G. Bonhomme, S. Tsikata, C. Honore, and D. Gresillon, Phys. Plasmas 20, 082107 (2013).

  35. S. Janhunen, A. Smolyakov, D. Sydorenko, M. Jimenez, I. Kaganovich, and Y. Raitses, Phys. Plasmas 25, 082308 (2018).

  36. O. Buneman, J. Nucl. Energy, Part C 4, 111 (1962).

    Article  ADS  Google Scholar 

  37. J. P. Boeuf and L. Garrigues, Phys. Plasmas 25, 061204 (2018).

  38. D. W. Forslund, R. L. Morse, and C. W. Nielson, Phys. Fluids 15, 2363 (1972).

    Article  ADS  Google Scholar 

  39. E. L. Lindman, J. Stat. Phys. 39, 769 (1985).

    Article  ADS  Google Scholar 

  40. C. T. Dum and R. N. Sudan, Phys. Rev. Lett. 23, 1149 (1969).

    Article  ADS  Google Scholar 

  41. L. Muschietti and B. Lembege, J. Geophys. Res.: Space Phys. 118, 2267 (2013).

    Article  ADS  Google Scholar 

  42. D. Biskamp and R. Chodura, in Proceedings of the 4th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Madison,1971, (IAEA, Vienna, 1972), Vol. 2, p. 265. https://library.psfc.mit.edu/catalog/online_pubs/conference%20proceedings/fusion%20energy%20conferences/1971%20v2%20%20STIPUB288_VOL2.pdf.

  43. D. Y. Sydorenko, PhD thesis (University of Saskatchewan, Saskatchewan, 2006).

  44. EDIPIC 1D3V Particle In A Cell Code. https://bitbucket.org/sjanhune/edipic/wiki/home.

  45. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Taylor & Francis, New York, 2005).

    Google Scholar 

  46. A. A. Balmashnov, S. P. Stepina, A. M. Umnov, and M. J. Jimenez, Prikl. Fiz., No. 2, 61 (2016).

  47. V. V. Andreev, D. V. Chuprov, V. I. Ilgisonis, A. A. Novitsky, and A. M. Umnov, Phys. Plasmas 24, 093518 (2017).

  48. D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, Phys. Plasmas 13, 014501 (2006).

  49. T. Charoy, J. P. Boeuf, A. Bourdon, J. A. Carlsson, P. Chabert, B. Cuenot, D. Eremin, L. Garrigues, K. Hara, I. D. Kaganovich, A. T. Powis, A. Smolyakov, D. Sydorenko, A. Tavant, O. Vermorel, et al., Plasma Sources Sci. Technol. 28, 105010 (2019).

    Article  ADS  Google Scholar 

  50. Z. Asadi, F. Taccogna, and M. Sharifian, Front. Phys. 7, 140 (2019). https://doi.org/10.3389/fphy.2019.00140

  51. V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, and E. A. Sorokina, Phys. Plasmas 23, 102304 (2016).

Download references

Funding

This work was supported in part by the Russian Science Foundation, project no. 17-12-01470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Smolyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyakov, A., Zintel, T., Couedel, L. et al. Anomalous Electron Transport in One-Dimensional Electron Cyclotron Drift Turbulence. Plasma Phys. Rep. 46, 496–505 (2020). https://doi.org/10.1134/S1063780X20050086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20050086

Keywords:

Navigation