Skip to main content
Log in

Effects of Nonextensive Ions (Heavier and Lighter) on Ion Acoustic Solitary Waves in a Magnetized Five Component Cometary Plasma with Kappa Described Electrons

  • SPACE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We have investigated the propagation characteristics of Ion-Acoustic Solitary Waves (IASWs) in a magnetized, cometary plasma consisting of hydrogen ions, positively and negatively charged oxygen ions, kappa described hot solar electrons, and slightly colder cometary electrons. The effects of q-nonextensive distributions, on both lighter and heavier ions have been studied by deriving the Zakharov–Kuznetsov (ZK) equation. The basic features of IASWs such as amplitude, width, and phase speed have been extensively studied by a numerical analysis of the ZK equation. It is found that superthermality of the electrons and nonextensivity of ions significantly modify the characteristics of the solitary waves. The amplitudes of the solitary waves seem to be well correlated to the presence of water molecules in a cometary plasma and the associated photoionization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

    Google Scholar 

  2. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  3. G. C. Das and S. G. Tagare, Plasma Phys. Control. Fusion 17, 1025 (1975).

    Article  Google Scholar 

  4. S. I. Popel, S. V. Vladimirov, and P. K. Shukla, Phys. Plasmas 2, 716 (1995).

    Article  ADS  Google Scholar 

  5. S. Watanabe, J. Phys. Soc. Jpn. 53, 950 (1984).

    Article  ADS  Google Scholar 

  6. V. E. Zakharov and E. A. Kuznetsov, Sov. Phys.–JETP 39, 285 (1974).

    ADS  Google Scholar 

  7. B. B. Kadomstev and V. I. Petiashvili, Sov. Phys. Doklady 15, 539 (1970).

    ADS  Google Scholar 

  8. V. S. Dryuma, JETP Lett. 19, 387 (1974).

    ADS  Google Scholar 

  9. V. I. Petviashvili, Sov. J. Plasma Phys. 2, 257 (1976).

    ADS  Google Scholar 

  10. V. I. Karpman and V. Yu Belashov, Phys. Lett. A 154, 131 (1991).

    Article  ADS  Google Scholar 

  11. S. V. Vladimirov and M. Y. Yu, Phys. Rev. E 48, 2136 (1993).

    Article  ADS  Google Scholar 

  12. S. A. Boldyrev, S. V. Vladirimov, and V. N. Tsytovich, Sov. J. Plasma Phys. 18, 727 (1992).

    Google Scholar 

  13. V. Belashov and E. S. Belashova, J. Atmos. Sol.–Terr. Phys. 136, 150 (2015).

    Article  ADS  Google Scholar 

  14. O. A. Pokhotelov, L. Stenflo, and P. K. Shukla, Plasma Phys. Rep. 22, 852 (1996).

    ADS  Google Scholar 

  15. A. E. Dubinov and D. Y. Kolotkov, Rev. Mod. Plasma Phys. 2, 2 (2018)

    Article  ADS  Google Scholar 

  16. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin, New York, 1969).

    MATH  Google Scholar 

  17. V. I. Karpman, Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

  18. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

  19. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon & Breach, Reading, MA, 1992).

  20. V. Yu. Belashov and S. V. Vladimirov, Solitary Waves in Dispersive Complex Media. Theory. Simulation. Applications (Springer-Verlag, Berlin, 2005).

    Book  MATH  Google Scholar 

  21. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  22. A. E. Dubinov and D. Yu. Kolotkov, Plasma Phys. Rep. 38, 909 (2012).

    Article  ADS  Google Scholar 

  23. S. I. Popel, A. P. Golub’, T. V. Losseva, A. V. Ivlev, S. A. Khrapak, and G. Morfill, Phys. Rev. E 67, 056402 (2003).

  24. T. V. Losseva, S. I. Popel, A. P. Golub’, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

  25. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

  26. B. Sahu and R. Roychoudhury, EPL 100, 15001 (2012).

    Article  ADS  Google Scholar 

  27. A. H. Khater, D. K. Callebaut, W. Malfliet, and A. R. Seadawy, Phys. Scr. 64, 533 (2001).

    Article  ADS  Google Scholar 

  28. A. H. Khater, D. K. Callebaut, and A. R. Seadawy, Phys. Scr. 67, 340 (2003).

    Article  ADS  Google Scholar 

  29. S. K. El-Labany, W. M. Moslem, E. I. El-Awady, and P. K. Shukla, Phys. Lett. A 375, 159 (2010).

    Article  ADS  Google Scholar 

  30. A. M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 12, 1395 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Guo, L. Mei, and Z. Zhang, Phys. Plasmas 22, 052306 (2015).

    Article  ADS  Google Scholar 

  32. M. A. Rehman and M. K. Mishra, Phys. Plasmas 23, 012302 (2016).

  33. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  34. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  35. Z. Daroczy, Inf. Control 16, 36 (1970).

    Article  Google Scholar 

  36. B. D. Sharma and I. J. Taneja, Metrika 22, 205 (1975).

    Article  MathSciNet  Google Scholar 

  37. G. Dial, Inf. Sci. 27, l (1982).

    Article  Google Scholar 

  38. D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).

    Article  ADS  Google Scholar 

  39. M. P. Leubner, Astrophys. Space Sci. 282, 573 (2002).

    Article  ADS  Google Scholar 

  40. I. D. Dubinova and A. E. Dubinov, Tech. Phys. Lett. 32, 575 (2006).

    Article  ADS  Google Scholar 

  41. M. Tribeche, L. Djebarni, and R. Amour, Phys. Plasmas 17, 042114 (2010).

  42. A. Sabetkar and D. Dorranian, J. Plasma Phys. 80, 565 (2014).

    Article  ADS  Google Scholar 

  43. N. Jannat, M. Ferdousi, and A. A. Mamun, Plasma Phys. Rep. 42, 678 (2016).

    Article  ADS  Google Scholar 

  44. Shalini, N. S. Saini, and A. P. Misra, Phys. Plasmas 22, 092124 (2015).

  45. G. Sreekala, M. Manesh, T. W. Neethu, V. Anu, S. Sijo, and C. Venugopal, Plasma Phys. Rep. 44, 102 (2018).

    Article  ADS  Google Scholar 

  46. B. S. Chahal, M. Singh, Shalini, and N. S. Saini, Phys. A: Stat. Mech. Appl. 491, 935 (2018).

    Article  MathSciNet  Google Scholar 

  47. M. M. Hatami and M. Tribeche, Phys. A: Stat. Mech. Appl. 491, 55 (2018).

    Article  Google Scholar 

  48. P. Bala, T. S. Gill, A. S. Bains, and H. Kaur, Indian J. Phys. 91, 1625 (2017).

    Article  ADS  Google Scholar 

  49. B. Ghosh and S. Banerjee, Turk. J. Phys. 40, 1 (2016).

    Article  Google Scholar 

  50. N. A. Chowdhury, A. Mannan, M. M. Hasan, and A. A. Mamun, arXiv: 1706.05634v1 (2017).

  51. S. Kaur and P. Bala, IOSR J. Appl. Phys. 9, 51 (2017).

    Google Scholar 

  52. A. Saha and P. Chatterjee, Braz. J. Phys. 45, 419 (2015).

    Article  ADS  Google Scholar 

  53. S. Ashraf, G. Mandal, and A. A. Mamun, Phys. Sci. Int. J. 6, 236 (2015).

    Article  Google Scholar 

  54. A. El-Depsy and M. M. Selim, Eur. Phys. J. Plus 131, 431 (2016).

    Article  Google Scholar 

  55. O. Bouzit, M. Tribeche, and A. S. Bains, Phys. Plasmas 22, 4506 (2015).

    Google Scholar 

  56. E. F. El-Shamy, M. Tribeche, and W. F. El-Taibany, Cent. Eur. J. Phys. 12, 805 (2014).

    Google Scholar 

  57. S. Ghebache and M. Tribeche, Phys. A: Stat. Mech. Appl. 447, 180 (2016).

    Article  Google Scholar 

  58. P. Chaizy, H. Reme, J. A. Sauvaud, C. d’Uston, R. P. Lin, D. E. Larson, D. L. Mitchell, R. D. Zwickl, D. N. Baker, S. J. Bame, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. McComas, and D. T. Young, Nature 349, 393 (1991).

    Article  ADS  Google Scholar 

  59. R. D. Zwickl, D. N. Baker, S. J. Bame, W. C. Feldman, S. A. Fuselier, W. F. Huebner, D. J. McComas, and D. T. Young, Geophys. Res. Lett. 13, 401 (1986).

    Article  ADS  Google Scholar 

  60. T. W. Broiles, G. Livadiotis, J. L. Burch, K. Chae, G. Clark, T. E. Cravens, R. Davidson, A. Erikkson, R. A. Frahm, S. A. Fuselier, J. Goldstein, R. Goldstein, P. Henri, H. Madanian, K. Mandt, et al., J. Geophys. Res.: Space Phys. 121, 7407 (2016).

    Article  ADS  Google Scholar 

  61. E. Saberian and A. Esfandyari-Kalejahi, arXiv 1311.0193v1 (2013).

  62. W. Oohara, D. Date, and R. Hatekeyama, Phys. Rev. Lett. 95, 175003 (2005).

  63. A. Sabetkar and D. Dorranian, Phys. Scr. 90, 035603 (2015).

    Article  ADS  Google Scholar 

  64. Z. Liu, W. Dan and G. He, Phys. Plasmas 15, 083702 (2008).

  65. A. L. Brinca and B. T. Tsurutani, Astron. Astrophys. 187, 311 (1987).

    ADS  Google Scholar 

  66. H. Abbasi and H. H. Pajouh, Phys. Plasmas 14, 012307 (2007).

  67. C. A. Hunniford, S. W. J. Scully, K. F. Dunn, and C. J. Latimer, J. Phys. B: At. Mol. Phys. 40, 1225 (2007).

    Article  ADS  Google Scholar 

  68. M. A. Cordiner and S. B. Charnley, Meteorit. Planet. Sci. 49, 21 (2014).

    Article  ADS  Google Scholar 

  69. N. Hershkowitz and Y.-C. Ghim, Plasma Sources Sci. Technol. 18, 014018 (2009).

  70. H. Oya, A. Marioka, W. Miyake, E. J. Smith and B. T. Tsurutani, Nature 321, 307 (1986).

    Article  ADS  Google Scholar 

  71. F. L. Scarf, F. V. Corotini, C. F. Kennel, D. A. Gurnett, W.-H. Ip, and E. J. Smith, Science 232, 377 (1986).

    Article  ADS  Google Scholar 

  72. H. Gunell, H. Nilsson, M. Hamrin, A. Eriksson, E. Odelstad, R. Maggiolo, P. Henri, X. Vallieres, K. Altwegg, C.-Y. Tzou, M. Rubin, K.-H. Glassmeier, G. S. Wieser, C. S. Wedlund, J. D. Keyser, et al., Astron. Astrophys. 600, A3 (2017).

    Article  Google Scholar 

  73. S. Rehman, A. Shah, and H. Haque, Astrophys. J. Lett. 880, L13 (2019).

    Article  ADS  Google Scholar 

  74. S. Gopinathan, S. Sebastian, N. P. Abraham, S. E. Devi, V. Chandu, and R. Gangadharan, Open Access Libr. J. 1, 1 (2014).

    Google Scholar 

  75. N. P. Abraham, S. Sebastian, G. Sreekala, S. E. Devi, G. Renuka, and C. Venugopal, Astrophys. Space Sci. 349, 49 (2014).

    Article  ADS  Google Scholar 

  76. J. Ekeberg, G. Wannberg, L. Eliasson, and K. Stasiewicz, Ann. Geophys. 28, 1299 (2010).

    Article  ADS  Google Scholar 

  77. P. Oberc, W. Parzyldo, P. Koperski, and S. Klimov, Adv. Space Res. 9, 347, 1989.

    Article  ADS  Google Scholar 

  78. S. V. Koshevaya, M. Tecpoyotl-T., E. A. Gutierrez-D., G. N. Burlak, and A. N. Kotsarenko, Rev. Mex. Astron. Astrofiz., Ser. Conf. 9, 112 (2000).

  79. M. R. Voelzke and L. S. Izaguirre, Planet. Space Sci. 65, 104 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors sincerely thank the referees for the valuable comments which were very enlightening and made us appreciate the fundamental contributions of scientists from one country.

Funding

Financial assistance from Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, Kerala, India (JRFs for MM and SG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Venugopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manesh, M., Anu, V., Neethu, T.W. et al. Effects of Nonextensive Ions (Heavier and Lighter) on Ion Acoustic Solitary Waves in a Magnetized Five Component Cometary Plasma with Kappa Described Electrons. Plasma Phys. Rep. 46, 541–551 (2020). https://doi.org/10.1134/S1063780X20050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20050062

Keywords:

Navigation