Skip to main content
Log in

Measuring and Modeling Streamer Velocity at an Air Discharge in a Highly Inhomogeneous Electric Field

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The velocities of the positive and negative streamers in the air at atmospheric pressure are experimentally, theoretically, and computationally studied at the discharge of the needle–plane gap by the nanosecond voltage pulses. The data on variation in the streamer’s velocity are obtained, including the data at various amplitudes of the voltage pulses. It is established that the streamer’s velocity varies along its motion and is maximum at the electrode with a small curvature radius and at the planar electrode. It is demonstrated that the character of variation in the computational values of the streamer’s velocity over the gap agrees with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, and K. Yan, J. Phys. D: Appl. Phys. 41, 234001 (2008).

    Article  ADS  Google Scholar 

  2. Yu. S. Akishev, G. I. Aponin, M. E. Grushin, V. B. Karal’nik, M. V. Pan’kin, A. V. Petryakov, and N. I. Trushkin, Plasma Phys. Rep. 34, 312 (2008).

    Article  ADS  Google Scholar 

  3. T. M. P. Briels, J. Kos, G. J. J. Winands, E. M. van Veldhuizen, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234004 (2008).

    Article  ADS  Google Scholar 

  4. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D: Appl. Phys. 42, 175202 (2009).

    Article  ADS  Google Scholar 

  5. A. Starikovskiy, IEEE Trans. Plasma Sci. 39, 2602 (2011).

    Article  ADS  Google Scholar 

  6. S. Yatom, J. Z. Gleizer, D. Levko, V. Vekselman, V. Gurovich, E. Hupf, Y. Hadas, and Y. E. Krasik, Europhys. Lett. 96, 65001 (2011).

    Article  ADS  Google Scholar 

  7. T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, J. Phys. D: Appl. Phys. 45, 275203 (2012).

    Article  Google Scholar 

  8. N. Yu. Babaeva and G. V. Naidis, Phys. Plasmas 23, 083227 (2016).

    Article  Google Scholar 

  9. P. Tardiveau, L. Magne, E. Marode, K. Ouaras, P. Jeanney, and B. Bournonville, Plasma Sources Sci. Technol. 25, 054005 (2016).

    Article  ADS  Google Scholar 

  10. F. Pechereau, Z. Bonaventura, and A. Bourdon, Plasma Sources Sci. Technol. 25, 044004 (2016).

    Article  ADS  Google Scholar 

  11. V. F. Tarasenko, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. Rep. 42, 369 (2016).

    Article  ADS  Google Scholar 

  12. D. A. Sorokin, V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, J. Appl. Phys. 125, 143301 (2019).

    Article  ADS  Google Scholar 

  13. L. V. Tarasova and L. N. Khudyakova, Sov. Tech. Phys. 14, 1148 (1969).

    Google Scholar 

  14. Low Temperature Plasma: Fundamentals, Technologies, and Techniques, Ed. by R. Hippler, H. Kersten, M. Schmidt, and K. H. Schoenbach (Wiley−VCH Verlag, Weinheim, 2008).

  15. Low Temperature Plasma Technology, Ed. by P. K. Chu and X. P. Lu (CRC, Boca Raton, 2014).

    Google Scholar 

  16. A. N. Panchenko, V. F. Tarasenko, M. I. Lomaev, N. A. Panchenko, and A. I. Suslov, Opt. Commun. 430, 210 (2019).

    Article  ADS  Google Scholar 

  17. V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, I. D. Kostyrya, and N.Yu. Babaeva, Plasma Phys. Rep. 44, 746 (2018).

    Article  ADS  Google Scholar 

  18. V. M. Efanov, M. V. Efanov, A. V. Komashko, A. V. Kirilenko, P. M. Yarin, and S. V. Zazoulin, in Ultra-Wideband, Short Pulse Electromagnetics 9, Ed. by F. Sabath, D. V. Giri, F. Rachidi-Haeri, and A. Kaelin (Springer-Verlag, New York, 2010), Part 5, p. 301.

  19. V. Tarasenko, D. Beloplotov, M. Lomaev, and D. Sorokin, Plasma Sci. Technol. 21, 044007 (2019).

    Article  ADS  Google Scholar 

  20. D. V. Beloplotov V. F. Tarasenko, D. A. Sorokin, and M. I. Lomaev, JETP Lett. 106, 653 (2017).

  21. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Phys. Plasmas 25, 083511 (2018).

    Article  ADS  Google Scholar 

  22. N. Yu. Babaeva, G. V. Naidis, D. V. Tereshonok, and E. E. Son, J. Phys. D: Appl. Phys. 51, 434002 (2018).

    Article  ADS  Google Scholar 

  23. E. V. Oreshkin, S. A. Barengolts, S. A. Chaikovsky, and V. I. Oreshkin, Phys. Plasmas 22, 123505 (2015).

    Article  ADS  Google Scholar 

  24. G. V. Naidis, Phys. Rev. E 79, 057401 (2009).

    Article  ADS  Google Scholar 

  25. V. F. Tarasenko, E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, Tech. Phys. 58, 1115 (2013).

    Article  Google Scholar 

Download references

Funding

The experimental part of the work was performed at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences and was supported by the Russian Foundation for Basic Research (project no. 18-32-00103). The computational part was carried out at the Joint Institute for High Temperatures of the Russian Academy of Sciences within the LIA-KAPPA project and was supported by the Russian Foundation for Basic Research (project no. 17-52-16002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Naidis, G.V., Beloplotov, D.V. et al. Measuring and Modeling Streamer Velocity at an Air Discharge in a Highly Inhomogeneous Electric Field. Plasma Phys. Rep. 46, 320–327 (2020). https://doi.org/10.1134/S1063780X20030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030113

Keywords:

Navigation