Skip to main content
Log in

Resonant Laser-Assisted Process of Ultrarelativistic Electrons Bremsstrahlung in the Field of a Nucleus

  • LASER PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The scrutiny of the resonant laser-assisted bremsstrahlung (LAB) of ultrarelativistic electrons within the laser plasma ambience in the field of a nucleus is presented. The kinematics of the explored process can develop within two probable channels. Thus, for the first channel an electron radiates a spontaneous photon and subsequently scatters on a nucleus. In contrast, for the second channel an electron scatters on a nucleus and consequently a spontaneous photon emits. It is important to underline, that within the laser field plasma the ultrarelativistic electron in the intermediate state emerges to the mass shell and transforms into the real particle. Furthermore, the second order effect functionally transmits into two sequential first order procedures (implementing the laser-stimulated Compton process and the laser-assisted Mott scattering) with respect to the fine structure constant. We evaluated the fluctuation of the spontaneous photon resonant frequency for the various initial parameters criteria. As a result, in the investigation a specific diapason of the resonant frequency modification for the second reaction scheme was highlighted when the ultrarelativistic electron at first scatters on a nucleus and then radiates a spontaneous photon. The designated interval consists of three frequency levels in alternative to the first channel interaction pattern. Moreover, the study delineates the occurrence of the particles propagation within a narrow angle cone in the vector direction parallel to the initial electron momentum. To summarize, the article estimates that the magnitude of the differential cross-section in the resonant conditions substantially exceeds the cross-section of the process without the laser plasma ambience. In addition, pulsed laser radiation laboratories (SLAC, FAIR, XFEL, ELI, XCELS) maintain the ability to verify the project calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  2. A. Di. Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  3. V. Bagnoud, B. Aurand, A. Blazevic, S. Borneis, C. Bruske, B. Ecker, U. Eisenbarth, J. Fils, A. Frank, E. Gaul, S. Goette, C. Haefner, T. Hahn, K. Harres, H.-M. Heuck, et al., Appl. Phys. B 100, 137 (2010).

    Article  ADS  Google Scholar 

  4. C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A. C. Melissinos, D. D. Mey-erhofer, W. Ragg, D. L. Burke, R. C. Field, G. Horton-Smith, A. C. Odian, J. E. Spencer, D. Walz, et al., Phys. Rev. Lett. 76, 3116 (1996).

    Article  ADS  Google Scholar 

  5. R. Kanya, Y. Morimoto, and K. Yamanouchi, Phys. Rev. Lett. 105, 123202 (2010).

    Article  ADS  Google Scholar 

  6. F. V. Bunkin and M. V. Fedorov, Sov. Phys. JETP 22, 844 (1966).

    ADS  Google Scholar 

  7. V. P. Oleinik, Sov. Phys. JETP 25, 697 (1967).

    ADS  Google Scholar 

  8. V. P. Oleinik, Zh. Sov. Phys. JETP 26, 1132 (1968).

    ADS  Google Scholar 

  9. M. V. Fedorov, An Electron in a Strong Light Field (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  10. V. I. Ritus and A. I. Nikishov, in Tr. Fiz. Inst. im. P.N. Le-bedeva, Ross. Akad. Nauk, Ed. by V. L. Ginzburg (Nauka, Moscow, 1979), Vol. 111, p. 5 [in Russian].

    Google Scholar 

  11. F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Rep. Prog. Phys. 72, 046401 (2009).

    Article  ADS  Google Scholar 

  12. S. P. Roshchupkin, A. A. Lebed’, and E. A. Padusenko, Laser Phys. 22, 1513 (2012).

    Article  ADS  Google Scholar 

  13. S. P. Roshchupkin, Laser Phys. 6, 837 (1996).

    Google Scholar 

  14. S. P. Roshchupkin, A. A. Lebed’, E. A. Padusenko, and A. I. Voroshilo, Laser Phys. 22, 1113 (2012).

    Article  ADS  Google Scholar 

  15. M. Dondera and V. Florescu, Radiat. Phys. Chem. 75, 1380 (2006).

    Article  ADS  Google Scholar 

  16. A. Florescu and V. Florescu, Phys. Rev. A 61, 033406 (2000).

    Article  ADS  Google Scholar 

  17. A. A. Lebed’ and S. P. Roshchupkin, Phys. Rev. A 81, 033413 (2010).

  18. S. P. Roshchupkin and O. B. Lysenko, Laser Phys. 9, 494 (1999).

    Google Scholar 

  19. A. A. Lebed’, Laser Phys. Lett. 13, 045401 (2016).

    Article  ADS  Google Scholar 

  20. A. A. Lebed’, E. A. Padusenko, S. P. Roshchupkin, and V. V. Dubov, Phys. Rev. A 94, 013424 (2016).

    Article  ADS  Google Scholar 

  21. A. A. Lebed’, E. A. Padusenko, S. P. Roshchupkin, and V. V. Dubov, Phys. Rev. A 97, 043404 (2018).

    Article  ADS  Google Scholar 

  22. P. A. Krachkov, A. Di. Piazza, and A. I. Milstein, a-rXiv:1904.05094, (2019).

  23. S. P. Roshchupkin, V. A. Tsybul’nik, and A. N. Chmirev, Laser Phys. 10, 1256 (2000).

    Google Scholar 

  24. A. Dubov, V. V. Dubov, and S. P. Roshchupkin, a-rXiv:1907.10431, (2019).

  25. D. M. Volkov, Z. Phys. 94, 250 (1935).

    Article  ADS  Google Scholar 

  26. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Dubov, V. V. Dubov or S. P. Roshchupkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubov, A., Dubov, V.V. & Roshchupkin, S.P. Resonant Laser-Assisted Process of Ultrarelativistic Electrons Bremsstrahlung in the Field of a Nucleus. Plasma Phys. Rep. 46, 252–258 (2020). https://doi.org/10.1134/S1063780X20030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030058

Keywords:

Navigation