Skip to main content
Log in

Stepwise Development of a Positive Long Spark in the Air

  • PLASMA KINETICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A spark discharge is modelled in a long air gap of atmospheric pressure at a positive voltage with a long front duration, excluding the quasi-continuous development of the leader. It is shown that, with a front steepness of less than 30 kV/μs, an ionization wave moves in the gap, whose speed is 2 orders of magnitude slower than the speed of streamers in the streamer zone of the leader. The electric field behind the front of such a wave along the entire length of the formed primary channel is kept within 20–25 kV/cm, providing an electron density of 1011 cm–3 for hundreds of microseconds. The state of the gas in the primary channel changes dramatically with the propagation of a disturbing field effect of a nanosecond in duration. The disturbance range to the head of the primary channel initiates the development of a streamer flash from this head with the initial velocity of ~109 cm/s, which leads to a sharp increase in the brightness of the radiation from the channel. The reason for the amplification of radiation is the active production of electronically excited particles. The gas temperature in the channel does not exceed 1000 K. According to characteristics such as the gas temperature, longitudinal electric field, and electron density, the channel in the step phase of the development of a long spark differs fundamentally from the leader’s channel, which is able to exist and develop only in the quasi-continuous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. B. Schonland, D. Malan, and H. Collens, Proc. Roy. Soc. A152, 595 (1935).

    ADS  Google Scholar 

  2. B. Schonland, D. Hoges, and H. Collens, Proc. Roy. Soc. A166, 56 (1938).

    ADS  Google Scholar 

  3. I. S. Stekol’nikov and A. V. Shkilev, Sov. Phys. Doklady 8, 825 (1963).

    ADS  Google Scholar 

  4. I. S. Stekol’nikov and A. V. Shkilev, Sov. Phys. Doklady 8, 829 (1963).

    ADS  Google Scholar 

  5. G. N. Aleksandrov, B. N. Gorin, V. V. Redkov, I. S. Stekol’nikov, and A. V. Shkilev, Sov. Phys. Doklady 13, 1246 (1968).

    ADS  Google Scholar 

  6. B. N. Gorin and A. V. Shkilev, Elektrichestvo, No. 2, 29 (1974).

  7. Les Renardieres Group. Positive Discharges in Long Air Gaps at Les Renardiers, Electra 53, 31 (1977).

  8. N. A. Popov, Plasma Phys. Rep. 29, 695 (2003).

    Article  ADS  Google Scholar 

  9. E. M. Bazelyan, Yu. P. Raizer, and N. L. Aleksandrov, J. Phys. D: Appl. Phys. 40, 4133 (2007).

    Article  ADS  Google Scholar 

  10. C. L. Silva and V. P. Pasko, J. Gephys. Res.: Atmos. 1, 590 (2013).

    Google Scholar 

  11. N. L. Aleksandrov and E. M. Bazelyan, JETP 91, 724 (2000).

    Article  ADS  Google Scholar 

  12. A. Y. Kostinskiy, V. S. Syssoev, N. A. Bogatov, E. A. Mareev, M. G. Andreev, M. U. Bulatov, D. I. Sukharevskii, and V. A. Rakov, J. Geophys. Res.: Atmos. 123, 5360 (2018).

    Article  ADS  Google Scholar 

  13. E. M. Bazelyan, Izv. Akad. Nauk SSSR. Energetika i transport, No. 3, 82 (1982).

  14. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  15. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D: Appl. Phys. 29, 740 (1996).

    Article  ADS  Google Scholar 

  16. N. A. Popov, Plasma Phys. Rep. 27, 886 (2001).

    Article  ADS  Google Scholar 

  17. S. Pancheshnyi, J. Phys. D: Appl. Phys. 46, 155201 (2013).

    Article  ADS  Google Scholar 

  18. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  19. Z. Machala, E. Marode, C. Laux, and C. Kruger, J. Adv. Oxid. Technol. 47, 133 (2000).

    Google Scholar 

  20. N. A. Popov, Plasma Phys. Rep. 32, 237 (2006).

    Article  ADS  Google Scholar 

  21. E. M. Bazelyan, Sov. Tech. Phys. 9, 370 (1964).

    Google Scholar 

Download references

Funding

One of the authors of (N.P.) thanks the Russian Science Foundation (project no. 19-17-00183) for the financial support of his participation in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Bazelyan.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazelyan, E.M., Popov, N.A. Stepwise Development of a Positive Long Spark in the Air. Plasma Phys. Rep. 46, 293–305 (2020). https://doi.org/10.1134/S1063780X20030022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20030022

Keywords:

Navigation