Skip to main content
Log in

Effect of the Magnetic Field on the Characteristics of a Pulsed Penning Ion Source

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

For a Penning ion generator, the dependences of the amplitude–time characteristics of the discharge current and the extracted current on the intensity and configuration of the magnetic field are studied in a regime with pulsed voltage on the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. F. M. Penning, Physica 3 (9), 873 (1936).

    Article  ADS  Google Scholar 

  2. F. M. Penning, Physica 4 (2), 71 (1937).

    Article  ADS  Google Scholar 

  3. F. M. Penning and J. H. A. Moubis, Physica 4 (11), 71 (1937).

    Article  ADS  Google Scholar 

  4. V. N. Pakulin, S. L. Potekhin, and V. I. Mesenyashin, Obzory po elektronnoi tekhnike. Ser. 7 “Tekhnologiya, organizatsiya proizvodstva i oborudovaniya” (Izd. TsNII “Elektronika”, Moscow, 1984), No. 10 (1035) [in Russian].

  5. G. A.Vasil'ev, Magnetic Discharge Pumps (Energiya, Moscow, 1970) [in Russian].

    Google Scholar 

  6. A. I. Kuz’michev, Magnetron Spray Systems (Avers, Kiev, 2008) [in Russian].

    Google Scholar 

  7. G. D. Liziakin, A. V. Gavrikov, Y. A. Murzaev, R. A. Usmanov, and V. P. Smirnov, Phys. Plasmas 23, 123502 (2016).

    Article  ADS  Google Scholar 

  8. R. Prakash, G. Lal Vyas, J. Jain, J. Prajapati, U. N. Pa, M. B. Chowdhuri, and R. Manchanda, Rev. Sci. Instrum. 83, 123502 (2012).

    Article  ADS  Google Scholar 

  9. S. N. Abolmasov and S. Samukawa, Rev. Sci. Instrum. 78, 073302 (2007).

    Article  ADS  Google Scholar 

  10. D. L. Hillis, P. D. Morgan, J. K. Ehrenberg, M. Groth, and M. F. Stamp, Rev. Sci. Instrum. 70, 359 (1999).

    Article  ADS  Google Scholar 

  11. D. V. Kolodko, N. V. Mamedov, D. N. Sinelnikov, G. V. Khodachenko, A. V. Kaziev, A. V. Tumarkin, and A. A. Pisarev, Phys. Procedia 71, 150 (2015). https://doi.org/10.1016/j.phpro.2015.08.338

    Article  ADS  Google Scholar 

  12. N. V. Mamedov, V. A. Kurnaev, I. V. Vizgalov, and D. N. Sinel’nikov, Yad. Fiz. Inzh. 4, 436 (2013). https://doi.org/10.1134/S2079562913050096

  13. D. Bulgadaryan, D. Sinelnikov, V. Kurnaev, N. Efimov, P. Borisyuk, and Y. Lebedinskii, Nucl. Instrum. and Methods in Phys. Res. B 438, 54 (2019). https://doi.org/10.1016/j.nimb.2018.10.043

    Article  ADS  Google Scholar 

  14. V. Valkovic, 14 MeV Neutrons. Physics and Applications (CRC Press: Taylor & Francis Group, Boca Raton, 2016).

  15. Y. Shi, Y. Raitses, and A. Diallo, Plasma Sources Sci. Technol. 27, 104006 (2018). https://doi.org/10.1088/1361-6595/aae42b

    Article  ADS  Google Scholar 

  16. A. D. Liberman and F. K. Chen, Proc. SPIE 2339, 188 (1995).

    Article  ADS  Google Scholar 

  17. G. Li, Z. Zhang, Q. Chi, and L. Liu, Nucl. Instr. and Methods in Phys. Res. B 290, 64 (2012). https://doi.org/10.1016/j.nimb.2012.09.001

    Article  Google Scholar 

  18. A. Sy, Q. Ji, A. Persaud, O. Waldmann, and T. Schenkel, Rev. Sci. Instrum. 83, 02B309 (2012).

  19. N. V. Mamedov, N. N. Shchitov, and I. A. Kanshin, Instrum. Exp. Tech. 59, 868 (2016).

    Article  Google Scholar 

  20. N. V. Mamedov, N. N. Shchitov, D. V. Kolodko, L. A. Sorokin, and D. N. Sinelnikov, Tech. Phys. 63, 1129 (2018). https://doi.org/10.1134/S1063784218080121

    Article  Google Scholar 

  21. H. Bernarder, X. L. M. Codechot, and C. A. Lejeune, US Patent No. 5104610 (April 14, 1992), http://www.google.com/patents/US5104610.

  22. F. Yan, D. Jin, L. Chen, and K. Xiao, Nucl. Instr. and Methods in Phys. Res. A 906, 110 (2018). https://doi.org/10.1016/j.nima.2018.07.071

    Article  Google Scholar 

  23. B. K. Das and A. Shyam, Instrum. Exp. Tech. 56, 130 (2013).

    Article  Google Scholar 

  24. J. L. Rovey, B. P. Ruzic, and T. J. Houlahan, Rev. Sci. Instrum. 78, 106101 (2007).

    Article  ADS  Google Scholar 

  25. J. L. Rovey, Plasma Sources Sci. Technol. 17, 035009 (2008). https://doi.org/10.1088/0963-0252/17/3/035009

    Article  ADS  Google Scholar 

  26. B. K. Das and A. Shyam, Rev. Sci. Instrum. 79, 123305 (2008). https://doi.org/10.1063/1.3054268

    Article  ADS  Google Scholar 

  27. W. Liu, M. Li, K. Gao, and D. Gu, Nucl. Instr. and Methods in Phys. Res. A 768, 120 (2014). https://doi.org/10.1016/j.nima.2014.09.052

    Article  Google Scholar 

  28. F. Yan, D. Jin, L. Chen, X. Wan, W. Xiang, IEEE Trans. Plasma Sci. 46, 2546 (2018). https://doi.org/10.1109/TPS.2018.2797362

    Article  ADS  Google Scholar 

  29. A. Fathi, S. A. H. Feghhi, S. M. Sadati, and E. Ebrahimibasabi, Nucl. Instr. and Methods in Phys. Res. A 850, 1 (2017). https://doi.org/10.1016/j.nima.2017.01.028

    Article  Google Scholar 

  30. R. S. Rachkov, A. Yu. Presnyakov, and D. I. Yurkov, At. Energ. 126, 334 (2019).

    Google Scholar 

  31. W. Schuurman, Physica 36, 136 (1967).

    Article  ADS  Google Scholar 

  32. E. B. Hooper, in: Advances in Electronics and Electron Physics (Academic Press, New York 1969), Vol. 27, p. 295.

    Google Scholar 

  33. G. V. Smirnitskaya and Kh. T. Nguen, Vestnik Mosk. Gos. Univ., No. 1, 3 (1969).

  34. E. M. Reikhrudel, G. V. Smirnitskaya, and G. A. Egiazaryan, Sov. Tech. Phys. 18, 83 (1973).

    Google Scholar 

  35. E. M. Reikhrudel, G. V. Smirnitskaya, and Kh. T. Nguen, Sov. Tech. Phys. 14, 789 (1969).

    Google Scholar 

  36. Yu. E. Kreindel’, Plasma Sources of Electrons (Atomizdat, Moscow, 1977), p. 144 [in Russian].

    Google Scholar 

  37. N. V. Mamedov, S. P. Maslennikov, Yu. K. Presnyakov, A. A. Solodovnikov, and D. I. Yurkov, Tech. Phys. 64, 1290 (2019). https://doi.org/10.1134/S1063784219090081

    Article  Google Scholar 

  38. W. Knauer, J. Appl. Phys. 37, 602 (1966). https://doi.org/10.1063/1.1708223

    Article  ADS  Google Scholar 

  39. E. Burns and G. Bischoff, AIP Conf. Proc. 392, 1207 (1997). https://doi.org/10.1063/1.52633

    Article  ADS  Google Scholar 

  40. F. K. Chen, J. Appl. Phys. 56, 3191 (1984). https://doi.org/10.1063/1.333882

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mamedov.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, N.V., Maslennikov, S.P., Solodovnikov, A.A. et al. Effect of the Magnetic Field on the Characteristics of a Pulsed Penning Ion Source. Plasma Phys. Rep. 46, 217–229 (2020). https://doi.org/10.1134/S1063780X20020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20020063

Keywords:

Navigation