Skip to main content
Log in

Study of the Properties of an Anomalous Glow Discharge Generating Electron Beams in Helium, Oxygen, and Nitrogen

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The current–voltage characteristics (CVCs) and efficiency of electron beam generation in glow discharges in helium and its mixtures with oxygen and nitrogen, as well as in pure oxygen and nitrogen, are studied experimentally. Special attention is paid to creating clean conditions for a discharge operating in helium. It is shown that, under clean conditions and pressures above 10 Torr, the CVC first rapidly grows. Then, the growth slows down and the CVC begins to decrease; however, at voltages above 1.5 kV, it rapidly grows again. These features are explained via changes in the mechanisms of electron emission and electron runaway from the cathode sheath, which lead to a highly efficient (up to 85%) generation of electron beams. In the presence of molecular admixtures, the CVC changes and begins to smoothly grow, the current being substantially higher than in pure helium. In pure oxygen and nitrogen, the CVC also grows smoothly and electron beam generation is highly efficient, but its mechanism is different. In pure helium, electrons are generated primarily due to photoemission, whereas in pure oxygen and nitrogen, electron emission from the cathode is mainly caused by the bombardment by fast heavy particles. In helium mixtures with oxygen and nitrogen, other emission mechanisms can also take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Generation of Runaway Electrons and X-rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Vol. 2: Processes and Applications, Ed. by V. F. Tarasenko (STT, Tomsk, 2015; Nova Science, New York, 2016).

  2. A. I. Golovin and A. I. Shloido, Usp. Prikl. Fiz. 4, 439 (2016).

    Google Scholar 

  3. H. Dreicer, Phys. Rev. 115, 238 (1959). https://doi.org/10.1103/PhysRev.115.238

    Article  ADS  MathSciNet  Google Scholar 

  4. L. P. Babich, T. V. Loiko, and V. A.Tsukerman, Sov. Phys. Usp. 33, 521 (1990). https://doi.org/10.3367/UFNr.0160.199007b.0049

    Article  ADS  Google Scholar 

  5. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (Futurepast, Arlington, VA, 2003).

    Google Scholar 

  6. K. A. Klimenko and Yu. D. Korolev, Sov. Phys. Tech. Phys. 35, 1084 (1990).

    Google Scholar 

  7. A. I. Golovin, Prikl. Fiz., No. 4, 27 (2016). https://doi.org/10.3367/UFNr.2017.10.038360

    Article  Google Scholar 

  8. H. C. Hayden and N. G. Utterback, Phys. Rev. 135, A1575 (1964). https://doi.org/10.1103/PhysRev.135.A1575

    Article  ADS  Google Scholar 

  9. A. R. Sorokin, Phys. Usp. 61, 1234 (2018).

    Article  ADS  Google Scholar 

  10. K. N. Ul’yanov and V. V. Chulkov, Sov. Phys. Tech. Phys. 33, 201 (1988).

    Google Scholar 

  11. D. Marić, K. Kutasi, G. Malović, Z. Donkó, and Z. Lj. Petrović, Eur. Phys. J. D 21, 73 (2002). https://doi.org/10.1140/epjd/e2002-00179-x

    Article  ADS  Google Scholar 

  12. B. M. Jelenković and A. V. Phelps, Phys. Rev. E 71, 016410 (2005). https://doi.org/10.1103/PhysRevE.71.016410

    Article  ADS  Google Scholar 

  13. J. J. Rocca, J. D. Meyer, M. R. Farrell, and G. J. Collins, J. Appl. Phys. 56, 790 (1984). https://doi.org/10.1063/1.334008

    Article  ADS  Google Scholar 

  14. A. V. Turkin, Tech. Phys. 59, 1591 (2014).

    Article  Google Scholar 

  15. P. Hartmann, H. Matsuo, Y. Ohtsuka, M. Fukao, M. Kando, Z. Donkó, Jpn. J. Appl. Phys. 42, 3633 (2003). https://doi.org/10.1143/JJAP.42.3633

    Article  ADS  Google Scholar 

  16. A. Derzsi, P. Hartmann, I. Korolov, J. Karacsony, G. Bánó, and Z. Donkó, J. Phys. D 42, 225204 (2009). https://doi.org/10.1088/0022-3727/42/22/225204

    Article  ADS  Google Scholar 

  17. A. P. Bokhan, P. A. Bokhan, and Dm. E. Zakrevsky, Tech. Phys. Lett. 29, 873 (2003).

    Article  ADS  Google Scholar 

  18. E. V. Belskaya, P. A. Bokhan, and Dm. E. Zakrevsky, Appl. Phys. Lett. 93, 091503 (2008). https://doi.org/10.1063/1.2978350

    Article  ADS  Google Scholar 

  19. P. A. Bokhan and D. E. Zakrevsky, Tech. Phys. Lett. 28, 73 (2002).

    Article  ADS  Google Scholar 

  20. P. A. Bokhan and D. E. Zakrevsky, Appl. Phys. Lett. 81, 2526 (2002). https://doi.org/10.1063/1.1511289

    Article  ADS  Google Scholar 

  21. P. A. Bokhan and D. E. Zakrevsky, Plasma Phys. Rep. 32, 786 (2006).

    Article  ADS  Google Scholar 

  22. P. A. Bokhan, P. P. Gugin, and Dm. E. Zakrevsky, Tech. Phys. Lett. 44, 1092 (2002).

    Article  ADS  Google Scholar 

  23. K. N. Ul’yanov, High Temp. 43, 641 (2005).

    Article  Google Scholar 

  24. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  25. Z. Yu, J. J. Rocca, and G. J. Collins, J. Appl. Phys. 54, 131 (1983). https://doi.org/10.1063/1.331738

    Article  ADS  Google Scholar 

  26. P. A. Bokhan and D. E. Zakrevsky, Tech. Phys. 52, 104 (2007).

    Article  Google Scholar 

  27. Yu. I. Syts’ko and S. I. Yakovlenko, Sov. J. Plasma Phys. 2, 34 (1976).

    Google Scholar 

  28. P. A. Bokhan and D. E. Zakrevsky, JETP Lett. 96, 133 (2012). https://doi.org/10.1134/S0021364012140032

    Article  ADS  Google Scholar 

  29. P. A. Bokhan and Dm. E. Zakrevsky, Phys. Rev. E. 88, 013105 (2013). https://doi.org/10.1103/PhysRevE.88.013105

    Article  ADS  Google Scholar 

  30. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Tech. Phys. 50, 1233 (2005).

    Article  Google Scholar 

  31. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Appl. Phys. Lett. 86, 151503 (2005). https://doi.org/10.1063/1.1901819

    Article  ADS  Google Scholar 

  32. O. V. Dudka, V. A. Ksenofontov, A. A. Masilov, and E. V. Sadanov, Tech. Phys. Lett. 39, 960 (2013).

    Article  ADS  Google Scholar 

  33. A. V. Phelps, Plasma Sources Sci. Technol. 10, 329 (2001). https://doi.org/10.1088/0963-0252/10/2/323

    Article  ADS  Google Scholar 

  34. D. Marić, K. Kutasi, G. Malović, Z. Donkó, and Z. Lj. Petrović, Eur. Phys. J. D 21, 73 (2002). https://doi.org/10.1140/epjd/e2002-00179-x

    Article  ADS  Google Scholar 

  35. N. G. Utterback and G. H. Miller, Rev.Sci. Inst. 32, 1101 (1961). https://doi.org/10.1063/1.1717173

    Article  ADS  Google Scholar 

  36. N. G. Utterback and G. H. Miller, Phys. Rev. 124, 1477 (1961). https://doi.org/10.1103/PhysRev.124.1477

    Article  ADS  Google Scholar 

  37. W. D.Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. 15, 2458 (1977). https://doi.org/10.1103/PhysRevB.15.2458

    Article  ADS  Google Scholar 

  38. N. G. Utterback, Phys. Rev. 129, 219 (1963). https://doi.org/10.1103/PhysRev.129.219

    Article  ADS  Google Scholar 

  39. L. Xu, A. V. Khrabrov, I. D. Kaganovich, and T. J. Sommer, Phys. Plasmas 24, 093511 (2017). https://doi.org/10.1063/1.5000387

    Article  ADS  Google Scholar 

  40. U. A. Arifov, R. R. Rakhimov, and Kh. D. Dzhurakulov, Radiotekh. Elektron. 8, 299 (1963).

    Google Scholar 

  41. N. Cook and R. B. Burtt, J. Phys. D 8, 800 (1975). https://doi.org/10.1088/0022-3727/8/7/012

    Article  ADS  Google Scholar 

  42. D. Marić, M. Savić, J. Sivoš, N. Skoro, M. Radmilović-Radjenović, G. Malović, and Z. Lj. Petrović, Eur. Phys. J. D 68, 155 (2014). https://doi.org/10.1140/epjd/e2014-50090-x

    Article  ADS  Google Scholar 

  43. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Plasma Phys. Rep. 32, 549 (2006).

    Article  ADS  Google Scholar 

  44. A. N. Tkachev and S. I. Yakovlenko, Tech. Phys. Lett. 29, 683 (2002).

    Article  ADS  Google Scholar 

  45. A. V. Karelin and A. R. Sorokin, Plasma Phys. Rep. 31, 519 (2005).

    Article  ADS  Google Scholar 

  46. T. Holstein, Phys. Rev. 72, 1212 (1947). https://doi.org/10.1103/PhysRev.72.1212

    Article  ADS  Google Scholar 

  47. T. Holstein, Phys. Rev. 83, 1159 (1951). https://doi.org/10.1103/PhysRev.83.1159

    Article  ADS  Google Scholar 

  48. A. V. Phelps, Phys. Rev. 117, 619 (1960). https://doi.org/10.1103/PhysRev.117.619

    Article  ADS  Google Scholar 

  49. Z. Donkó, S. Hamaguchi, and T. Gans, Plasma Sources Sci. Technol. 27, 054001 (2018).

    Article  ADS  Google Scholar 

  50. A. Fierro, Ch. Moore, B. Scheiner, B. T. Yee, and M. M. Hopkins, J. Phys. D 50, 065202 (2017). https://doi.org/10.1088/1361-6463/aa506c

    Article  ADS  Google Scholar 

  51. F. L. Jones, C. G. Morgan, and D. K. Davies, Proc. Phys. Soc. 85, 351 (1965). https://doi.org/10.1088/0370-1328/85/2/317

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed under State Assignment no. 0306-2019-0020 and supported in part by the Russian Foundation for Basic Research, project no. 17-08-00121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Zakrevsky.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokhan, P.A., Gugin, P.P., Zakrevsky, D.E. et al. Study of the Properties of an Anomalous Glow Discharge Generating Electron Beams in Helium, Oxygen, and Nitrogen. Plasma Phys. Rep. 45, 1035–1052 (2019). https://doi.org/10.1134/S1063780X19100015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19100015

Navigation