Skip to main content
Log in

On the Modes of Diffuse Spreading of Ionized Meteor Trails

  • IONOSPHERIC PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A special regime of the lower ionosphere sounding at altitudes of about 100 km reveals radio reflections from fairly dense (with a line density of 1014–1016 m–1) ionized meteor trails with a characteristic lifetime from a few tens of seconds to several tens of minutes. During the first 250 s, radio reflections from ionized trails with a line density of (2–3) × 1015 m–1 exhibit a power-law time dependence of the frequency of the reflected radio signal, \(f \propto {{t}^{{ - \gamma }}}\), with γ = 0.5 (classical diffusion mode). Less dense trails decay more slowly (γ < 0.5, subdiffusion mode), while denser ones decay faster (γ > 0.5, superdiffusion mode). It is shown that different modes of diffuse spreading of meteor trails can be caused by the high inhomogeneity of the medium and depend on the scale of ionized trails arising upon destruction of meteoroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Bronshten, Physics of Meteor Phenomena (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  2. P. F. Goldsbrough and C. D. Ellyett, J. Geophys. Res. 81, 6135 (1976).

    Article  ADS  Google Scholar 

  3. T. Maruyama, H. Kato, and M. Nakamura, J. Geophys. Res. 108, 1324 (2003).

    Google Scholar 

  4. A. Kozlovsky, S. Shalimov, J. Kero, T. Raita, and M. Lester, J. Geophys. Res. 123, 5974 (2018).

    Article  Google Scholar 

  5. E. A. Silber, W. K. Hocking, M. L. Niculescu, M. Gritsevich, and R. E. Silber, Monthly Not. Royal Astronom. Soc. 469, 1869 (2017).

    Article  ADS  Google Scholar 

  6. S. L. Shalimov and A. E. Kozlovskii, Plasma Phys. Rep. 41, 645 (2015).

    Article  ADS  Google Scholar 

  7. A. M. Dykhne, I. L. Dranikov, P. S. Kondratenko, and A. V. Popov, J. Hydraulic Res. 43, 213 (2005).

    Article  Google Scholar 

  8. J. L. Chau, I. Strelnikova, C. Schult, M. M. Oppenheim, M. C. Kelley, G. Stober, and W. Singer, Geophys. Rev. Lett. 41, 3336 (2014).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

  10. F. J. Lubken, J. Geophys. Res. 97, 20385 (1992).

    Article  ADS  Google Scholar 

  11. M. C. Kelley, C. A. Kruschwitz, C. S. Gardner, J. D. Drummond, and T. J. Kane, J. Geophys. Res. 108, 8454 (2003).

    Article  Google Scholar 

  12. L. F. Richardson, Proc. Royal Soc. London A 110, 709 (1926).

    Article  ADS  Google Scholar 

  13. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).

    ADS  Google Scholar 

  14. A. M. Obukhov, Izv. AN SSSR, Ser. Geograf. Geofiz. 5, 453 (1941).

    Google Scholar 

  15. G. Batchelor, Quarterly J. Royal Meteorol. Soc. 76, 133 (1950).

    Article  ADS  Google Scholar 

  16. J. P. Younger, C. S. Lee, I. M. Reid, R. A. Vincent, Y. H. Kim, and D. J. Murphy, J. Geophys. Res. Atmos. 119, 10027 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Shalimov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalimov, S.L., Kozlovskii, A.E. On the Modes of Diffuse Spreading of Ionized Meteor Trails. Plasma Phys. Rep. 45, 936–940 (2019). https://doi.org/10.1134/S1063780X1909006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1909006X

Navigation