Skip to main content
Log in

Study of the Compression of a Condensed Deuterated Target Installed on the Wire Array Axis

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The implosion of combined loads consisting of an outer wire (fiber) array and inner cylindrical target was studied experimentally at the Angara-5-1 facility (3.5 MA, 100 ns) at currents of up to 3.5 MA. The experiments were carried out with 12- and 20-mm-diameter outer arrays made of 15-μm-diameter aluminum wires, composite arrays made of aluminum wires and 25-μm-diameter kapron fibers, and arrays made of kapron fibers with a 1-μm-thick aluminum coating. The number of wires varied from 10 to 40. The targets were made of agar-agar or low-density deuterated polyethylene. The parameters of the Z-pinch plasma were determined using the Angara-5-1 diagnostic complex, which included optical streak cameras, X-ray frame cameras, X-ray detectors, X-ray pinhole cameras, neutron detectors, and a mica-crystal X-ray spectrograph. It is established that the plasma compression dynamics and the formation of local plasma structures generating neutrons depend on the load configuration: the array diameter, the number of wires (fibers), and the diameter and density of the target. The most efficient compression and the highest plasma parameters (the compression ratio and plasma temperature), as well as the highest neutron yield, were achieved in experiments with 12-mm-diameter aluminum wire arrays inside which a 1-mm-diameter deuterated target with a mass density of 0.3 g/cm3 was installed As a result of collision of the bulk of the array mass with the inner target, a compact pinch with a diameter of ≈0.5 mm forms. The pinch formation is accompanied by the generation of a soft X-ray pulse. The development of MHD instabilities in the pinch plasma results in the formation of multiple hot spots (HSs) on the pinch axis with a typical size of 200–300 μm and an electron temperature of 0.4–0.7 keV. The HS formation is accompanied by emission of neutrons with a mean energy of 2.7 ± 0.2 MeV. The maximum neutron yield achieved in these experiments was 2.6 × 1010 neutrons/shot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. V. V. Vikhrev and V. V. Ivanov, Sov. Phys. Dokl. 30, 492 (1985).

    ADS  Google Scholar 

  2. V. V. Yan’kov, Sov. J. Plasma Phys. 17, 305 (1991).

    Google Scholar 

  3. S. L. Nedoseev, in Proceedings of the International Workshop on Physics of Alternative Magnetic Confinement Schemes, International School of Plasma Physics, Varenna, 1990, Ed. by S. Ortolani and E. Sindoni (Società Italiana di Fisica, Bologna, 1991), p. 575.

  4. S. A. Dan’ko, Yu. G. Kalinin, A. V. Kopchikov, V. D. Korolev, and V. V. Yankov, in Proceedings of the 6th International Conference on Megagauss Magnetic Field Generation and Related Topics, Albuquerque, NM, 1992, p. 44.

  5. Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, E. M. Gordeev, S. A. Dan’ko, V. D. Korolev, S. F. Medovshchikov, S. L. Nedoseev, E. A. Smirnova, V. I. Tumanov, A. S. Chernenko, and A. Yu. Shashkov, Plasma Phys. Rep. 27, 1039 (2001).

    Article  ADS  Google Scholar 

  6. Yu. L. Bakshaev, V. V. Bryzgunov, V. V. Vikhrev, S. A. Dan’ko, B. R. Meshcherov, S. L. Nedoseev, E. A. Smirnova, G. I. Ustroev, A. S. Chernenko, and A. Yu. Shashkov, Plasma Phys. Rep. 32, 531 (2006).

    Article  ADS  Google Scholar 

  7. A. A. Akunets, V. A. Bryzgunov, I. V. Volobuev, E. D. Kazakov, Yu. G. Kalinin, V. D. Korolev, V. G. Pimenov, E. A. Smirnova, and G. I. Ustroev, Plasma Phys. Rep. 36, 699 (2010).

    Article  ADS  Google Scholar 

  8. Yu. L. Bakshaev, V. V. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Dan’ko, E. D. Kazakov, Yu. G. Kalinin, V. D. Korolev, D. Klir, A. D. Mironenko-Marenkov, V. G. Pimenov, E. A. Smirnova, and G. I. Ustroev, Plasma Phys. Rep. 40, 437 (2014).

    Article  ADS  Google Scholar 

  9. V. V. Aleksandrov, V. A. Bryzgunov, E. V. Grabovski, A. N. Gritsuk, I. V. Volobuev, E. D. Kazakov, Yu. G. Kalinin, V. D. Korolev, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, V. G. Pimenov, E. A. Smirnova, G. I. Ustroev, et al., Plasma Phys. Rep. 42, 355 (2016).

    Article  ADS  Google Scholar 

  10. D. R. Welch, D. V. Rose, C. Thoma, R. E. Clark, C. B. Mostrom, W. A. Stygar, and R. J. Leeper, Phys. Plasmas 17, 072702 (2010).

    Article  ADS  Google Scholar 

  11. D. Klir, J. Kravaric, P. Kubes, K. Rezak, S. S. Annan’ev, YuL. Bakshaev, P. I. Blinov, A. S. Chernenko, E. D. Kazakov, V. D. Korolev, G. I. Ustroev, L. Juha, J. Krasa, and A. Vetyhan, IEEE Trans. Plasma Sci. 37, (3) (2009).

  12. R. B. Spilman, G. T. Balwin, G. Cooper, D. Hebron, T. W. Hussey, C. Landron, R. J. Leeper, S. F. Lopez, J. S. McGum, D. J. Muron, J. L. Porter, L. Ruggles, O. L. Ruiz, A. Schmidlapp, and M. Vargas, Sandia Report No. SAND 98-0705 (Sandia National Laboratories, Albuquerque, NM, 1998). https://www.osti.gov/servlets/purl/661646.

    Google Scholar 

  13. C. A. Coverdate, C. Deeney, A. L. Velikovich, I. Davis, R. W. Clark, Y. K. Chong, G. Chittenden, S. Chantrenne, C. L. Ruiz, G. W. Coopers, A. J. Nelson, J. Franliu, P. D. le Pell, J. P. Apruzese, J. Levine, et al., Phys. Plasmas 14, 056309 (2007).

    Article  ADS  Google Scholar 

  14. D. Klir, A. V. Shishlov, P. Kubes, K. Rezac, E. I. Fursov, V. A. Kokshenev, B. M. Kovalchuc, J. Kravaric, N. E. Kurmaev, A. Yu. Labrtsky, and N. A. Ratakhin, Phys. Plasmas 19, 032706 (2012).

    Article  ADS  Google Scholar 

  15. A. V. Batyunin, A. N. Bulatov, V. D. Vikharev, G. S. Volkov, V. I. Zaitsev, S. V. Zakharov, S. A. Komarov, S. L. Nedoseev, L. B. Nikandrov, G. I. Oleinik, V. P. Smirnov, S. V. Trofimov, E. G. Utyugov, M. V. Fedulov, I. N. Frolov, et al., Sov. J. Plasma Phys. 16, 597 (1990).

    Google Scholar 

  16. D. Klir, J. Kravaric, P. Kubes, K. Rezak, J. Cikhardt, E. Litseva, T. Hihlik, S. S. Annan’ev, Yu. L. Bakshaev, V. A. Bryzgunov, A. S. Chernenko, Yu. G. Kalinin, E. D. Kazakov, V. D. Korolev, G. I. Ustroev, et al., Plasma Phys. Controlled Fusion 52, 065013 (2010).

    Article  ADS  Google Scholar 

  17. V. V. Vikhrev and A. D. Mironenko-Marenkov, Plasma Phys. Rep. 38, 225 (2012).

    Article  ADS  Google Scholar 

  18. S. A. Shutz, M. C. Hermann, R. A. Vessey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).

    Article  ADS  Google Scholar 

  19. M. R. Gomez, S. A. Slutz, A. B. Sefkow, D. B. Sinars, K. D. Hahn, S. B. Hansen, E. C. Harding, P. F. Knapp, P. F. Schmit, C. A. Jennings, T. J. Awe, M. Geissel, D. C. Rovang, G. A. Chandler, G. W. Cooper, et al., Phys. Rev. Lett. 113, 155003 (2014).

    Article  ADS  Google Scholar 

  20. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  21. J. B. A. Palmer, S. V. Lebedev, S. N. Bland, J. P. Chittenden, and D. J. Ampleford, AIP Conf. Proc. 651, 79 (2002).

    Article  ADS  Google Scholar 

  22. K. N. Mitrofanov, E. V. Grabovski, V. V. Aleksandrov, I. N. Frolov, G. M. Oleinik, Ya. N. Laukhin, A. N. Gritsuk, P. V. Sasorov, and S. F. Medovshchikov, Plasma Phys. Rep. 38, 941 (2012).

    Article  ADS  Google Scholar 

  23. K. N. Mitrofanov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, V. V. Aleksandrov, G. M. Oleinik, S. F. Medovshchikov, and A. P. Shevel’ko, Plasma Phys. Rep. 39, 62 (2013).

    Article  ADS  Google Scholar 

  24. P. Kubeš, V. D. Korolev, Yu. L. Bakshaev, P. I. Blinov, M. I. Ivanov, E. D. Kazakov, E. Kravárik, D. Klír, L. V. Korel’skii, E. V. Kravchenko, K. Řezáč, G. I. Ustroev, and A. S. Chernenko, Plasma Phys. Rep. 34, 52 (2008).

    Article  ADS  Google Scholar 

  25. G. S. Volkov, V. I. Zaitsev, E. V. Grabovski, M. V. Fedulov, V. V. Aleksandrov, and N. I. Lakhtyushko, Plasma Phys. Rep. 36, 191 (2010).

    Article  ADS  Google Scholar 

  26. Z. A. Al’bikov, E. P. Velikhov, and A. I. Veretennikov, At. Energ. 68, 26 (1990).

  27. O. N. Krokhin, V. V. Nikulin, and L. V. Volobuev, Czech. J. Phys. 54, C359 (2004).

    Article  Google Scholar 

  28. G. M. Oleinik, Instrum. Exp. Tech. 43, 328 (2000).

    Article  Google Scholar 

  29. G. S. Volkov, S. A. Dan’ko, P. Zehnter, V. I. Zaitsev, V. O. Mishenskii, M. V. Fedulov, A. Chuvatin, and B. Etlicher, Plasma Phys. Rep. 25, 34 (1999).

    ADS  Google Scholar 

  30. K. N. Mitrofanov, E. V. Grabovski, G. M. Oleinik, V. V. Aleksandrov, A. N. Gritsuk, I. N. Frolov, Ya. N. Laukhin, P. V. Sasorov, and A. A. Samokhin, Plasma Phys. Rep. 38, 797 (2012).

    Article  ADS  Google Scholar 

  31. V. V. Aleksandrov, E. V. Grabovski, K. N. Mitrofanov, G. M. Oleinik, V. P. Smirnov, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 30, 568 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-07-00201a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Korolev.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Volkov, G.S., Grabovski, E.V. et al. Study of the Compression of a Condensed Deuterated Target Installed on the Wire Array Axis. Plasma Phys. Rep. 45, 805–820 (2019). https://doi.org/10.1134/S1063780X19090022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19090022

Navigation