Skip to main content
Log in

Head-on Collision of Ion-Acoustic Solitary Waves with Two Negative Ion Species in Electron–Positron–Ion Plasmas and Production of Rogue Waves

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The interactions between ion acoustic solitary waves (IASWs) are investigated considering completely ionized electron–positron–ion (epi) plasmas consisting of ions with positive and two negative species, nonthermal electrons, and positrons. Two-sided Korteweg–de Vries (KdV) and modified KdV (mKdV) equations are derived using extended Poincaré–Lighthill–Kuo (ePLK) reductive perturbation method. To investigate the production of ion-acoustic rogue waves (IARWs), the rational solution of nonlinear Schrödinger equation (NLSE) is derived from the mKdV equation. Two types of plasmas containing \({\text{A}}{{{\text{r}}}^{ + }}\), \({{{\text{F}}}^{ - }}\), and \({\text{SF}}_{{\text{5}}}^{ - }\) species, as well as \({\text{SF}}_{{\text{5}}}^{ + }\), \({{{\text{F}}}^{ - }}\), and \({\text{SF}}_{{\text{5}}}^{ - }\) species, are taken into account to study their effects on the amplitudes and phase shifts after collision, as well as the production and properties of rogue waves (RWs). It is observed during collision that a high-amplitude wave is produced in the interaction region depending on the type and parameters of plasmas. The nonthermality of electrons and positrons, electron-to-positron temperature ratio, and the density of negative ions modify the phase shift and amplitude of the waves produced during the collision of the two solitons. The amplitude of the RW for the \({\text{A}}{{{\text{r}}}^{ + }}\), \({{{\text{F}}}^{ - }}\), and \({\text{SF}}_{{\text{5}}}^{ - }\) plasmas is found to be larger than that for the \({\text{SF}}_{{\text{5}}}^{ + }\), \({{{\text{F}}}^{ - }}\), and \({\text{SF}}_{{\text{5}}}^{ - }\) plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. P. K. Shukla, M. Y. Yu, and N. L. Tsintsadze, Phys. Fluids 27, 327 (1984).

    Article  ADS  Google Scholar 

  2. P. K. Shukla, N. N. Rao, M. Y. Yu, and N. L. Tsintsadze, Phys. Rep. 138, 1 (1986).

    Article  ADS  Google Scholar 

  3. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  4. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer, Berlin, 1987).

    Google Scholar 

  5. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  6. F. C. Michel, Theory of Neutron Star Magnetosphere (Chicago University Press, Chicago, 1991).

    Google Scholar 

  7. Y. Nakamura, M. Nakamura, and T. Itoh, Phys. Rev. Lett. 37, 209 (1976).

    Article  ADS  Google Scholar 

  8. M. Q. Tran and S. Coquerand, Phys. Rev. A 14, 2301 (1976).

    Article  ADS  Google Scholar 

  9. A. Y. Wong, D. L. Mamas, and D. Arnush, Phys. Fluids 18, 1489 (1975).

    Article  ADS  Google Scholar 

  10. A. J. Ahearn and N. B. Hannay, J. Chem. Phys. 21, 119 (1953).

    Article  ADS  Google Scholar 

  11. B. Song, N. D’Angelo, and R. L. Merlino, Phys. Fluids B 3, 284(1991).

    Article  ADS  Google Scholar 

  12. H. S. W. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976).

    Google Scholar 

  13. W. Swider, in Ionospheric Modeling, Ed. by J. N. Korenkov (Birkhauser, Basel, 1988), p. 403.

    Google Scholar 

  14. A. J. Coates, F. J. Crary, G. R. Lewis, D. T. Young, J. H. Waite, Jr., and E. C. Sittler, Jr., Geophys. Res. Lett. 34, L22103 (2007).

    Article  ADS  Google Scholar 

  15. S. V. Vladimirov, K. Ostrikov, M. Y. Yu, and G. E. Morfill, Phys. Rev. E 67, 036406 (2003).

    Article  ADS  Google Scholar 

  16. A. A. Mamun and P. K. Shukla, Phys. Plasmas 10, 1518 (2003).

    Article  ADS  Google Scholar 

  17. M. Djebli, Phys. Plasmas 10, 4910 (2003).

    Article  ADS  Google Scholar 

  18. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  19. R. A. Gottscho and C. E. Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986).

    Article  ADS  Google Scholar 

  20. R. Ichiki, S. Yoshimura, T. Watanabe, Y. Nakamura, and Y. Kawai, Phys. Plasmas 9, 4481 (2002).

    Article  ADS  Google Scholar 

  21. I. Kourakis, A. Esfandyari-Khalejahi, M. Mehdipoor, and P. K. Shukla, Phys. Plasmas 13, 052117 (2006).

    Article  ADS  Google Scholar 

  22. A. Esfandyari-Khalejahi, I. Kourakis, M. Mehdipoor, and P. K. Shukla, J. Phys. 39, 13817 (2006).

    ADS  MathSciNet  Google Scholar 

  23. A. A. Mamun, P. K. Shukla, and B. Eliasson, Phys. Rev. E 80, 046406 (2009).

    Article  ADS  Google Scholar 

  24. Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009).

    Article  ADS  Google Scholar 

  25. A. A. Mamun and P. K. Shukla, Phys. Lett. A 374, 472 (2009).

    Article  ADS  Google Scholar 

  26. G. C. Das, Plasma Phys. 21, 257 (1979).

    Article  ADS  Google Scholar 

  27. W. M. Moslem, J. Plasma Phys. 61, 177 (1999).

    Article  ADS  Google Scholar 

  28. S. K. El-Labany, S. A. El-Warraki, and W. M. Moslem, J. Plasma Phys. 63, 343 (2000).

    Article  ADS  Google Scholar 

  29. J. K. Xue, Phys. Rev. E 69, 016403 (2004).

    Article  ADS  Google Scholar 

  30. J. N. Han, S. L. Du, and W. S. Duan, Phys. Plasmas 15, 112104 (2008).

    Article  ADS  Google Scholar 

  31. J. N. Han, X. X. Yang, D. X. Tian, and W. S. Duan, Phys. Lett. A 372, 4817 (2008).

    Article  ADS  Google Scholar 

  32. M. A. Khaled, Astrophys. Space Sci. 350, 607 (2014).

    Article  ADS  Google Scholar 

  33. N. S. Saini and K. Singh, Phys. Plasmas 23, 103701 (2016).

    Article  ADS  Google Scholar 

  34. S. A. El-Tantawy and P. Carbonaro, Phys. Lett. A 380, 1627 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. S. K. El-Labany, W. M. Moslem, Kh. A. Shnishin, S. A. El-Tantawy, and P. K. Shukla, Phys. Plasmas 18, 042306 (2011)

    Article  ADS  Google Scholar 

  36. D. H. Peregrine, J. Aust. Math. Soc. B 25, 16 (1983).

    Article  Google Scholar 

  37. H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  38. S. K. Sharma and H. Bailung J. Geophys. Res. 11, 8 943 (2013)

  39. S. A. El-Tantawy, S. Ali, R. Maroof, A. M. Wazwaz, and S. K. El-Labany, Indian J. Phys. 91, 939 (2017)

    Article  ADS  Google Scholar 

  40. S. A. El-Tantawy, Chaos, Solitons, Fractals 93, 162 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  41. F. Verheest, M. A Hellberg, and W. A Hereman, Phys. Rev. E 86, 036402 (2012).

    Article  ADS  Google Scholar 

  42. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  43. A. E. Dubinov, Phys. Scr. 80, 035504 (2009).

    Article  ADS  Google Scholar 

  44. A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, Dordrecht, 2009).

    Book  MATH  Google Scholar 

  45. K. Shimizu and Y. H. Ichikawa, J. Phys. Soc. Jpn. 33, 789 (1972).

    Article  ADS  Google Scholar 

  46. M. Irfan, S. Ali, and A. M. Mirza, Astrophys. Space Sci. 353, 515 (2014).

    Article  ADS  Google Scholar 

  47. S. K. El-Labany, J. Plasma Phys. 54, 295 (1995).

    Article  ADS  Google Scholar 

  48. S. K. El-Labany, N. A. El-Bedwehy, and H. N. Abd El-Razek, Phys. Plasmas 14, 103704 (2007).

    Article  ADS  Google Scholar 

  49. B. Mustapha, B. Soufiane, and T. Mouloud, Astrophys. Space Sci. 341, 591 (2012).

    Article  Google Scholar 

  50. R. Fedele, S. De Nicola, D. Grecu, P. K. Shukla, and A. Visinescu, AIP Conf. Proc. 1061, 273 (2008).

    Article  ADS  Google Scholar 

  51. V. E. Zakharov, J. Appl. Mech. Tech. Phys. 9, 190 (1968).

    Article  ADS  Google Scholar 

  52. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    Article  ADS  Google Scholar 

  53. G. B. Whitham, J. Fluid Mech. 22, 273 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  54. W. M. Moslem, Phys. Plasmas 18, 032301 (2011).

    Article  ADS  Google Scholar 

  55. R. Ichiki, S. Yoshimura, T. Watanabe, M. Shindo, and Y. Kawai, Phys. Plasmas 8, 4275 (2001).

    Article  ADS  Google Scholar 

  56. A. E. Dubinov and D. Yu. Kolotkov, High Energy Chem. 46, 6 (2012).

    Article  Google Scholar 

  57. Y. Nishida and T. Nagasawa, Phys. Rev. Lett. 45, 1626 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Talukder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.S., Talukder, M.R. Head-on Collision of Ion-Acoustic Solitary Waves with Two Negative Ion Species in Electron–Positron–Ion Plasmas and Production of Rogue Waves. Plasma Phys. Rep. 45, 871–887 (2019). https://doi.org/10.1134/S1063780X19090010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19090010

Navigation