Skip to main content
Log in

Giant Jets as Higher Transverse Modes of an Open Cavity

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The spatial structure of giant blue jets in the upper atmospheric layers is considered on the basis of a nonlinear plasma waveguide model of electric gas breakdown. Laser analogues for such waves are proposed, and the azimuthally equidistant conical structure formed by the rays of a giant jet is explained. The field parameters and the electron density required for this process are estimated. Using the model proposed, requirements to the diagnostics of waves in the upper atmosphere are formulated. Similar models for analyzing thunderstorm phenomena in the lower atmosphere are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. P. Pasko, Nature 423, 927 (2003).

    Article  ADS  Google Scholar 

  2. V. P. Pasco, M. A. Stanley, J. D. Mathews, U. S. Inan, and T. J. Wood, Nature 416, 152 (2002).

    Article  ADS  Google Scholar 

  3. H. T. Su, R. R. Hsu, A. B. Chen, Y. C. Wang, W. C. Wang, W. S. Hslao, W. C. Lal, L. C. Lee, M. Sato, and H. Fukunishi, Nature 423, 974 (2003).

    Article  ADS  Google Scholar 

  4. V. P. Pasko, J. Geophys. Res. 115, E35 (2010).

    Article  Google Scholar 

  5. H. L. Rowland, J. Astrophys. Sol.−Terr. Phys. 60, 831 (1998).

    Article  ADS  Google Scholar 

  6. E. V. Mishin and G. M. Milikh, Space Sci. Rev. 137, 473 (2008).

    Article  ADS  Google Scholar 

  7. V. V. Surkov and M. Hayakawa, Ann. Geophys. 30, 1185 (2012).

    Article  ADS  Google Scholar 

  8. N. I. Petrov and G. N. Petrova, Tech. Phys. 44, 472 (1999).

    Article  Google Scholar 

  9. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Nauka, Moscow, 1989; Springer-Verlag, 1994).

  10. A. F. D’yakov, Yu. K. Bobrov, A. V. Sorokin, and Yu. V. Yurgelenas, Physical Principles of Electric Breakdown in Gases (Izd. MEI, Moscow, 1999) [in Russian].

    Google Scholar 

  11. A. V. Shelobolin, Inzh. Fiz., No. 7, 35 (2014).

  12. A. V. Agafonov, A. V. Bagulya, O. D. Dalkarov, M. A. Negodaev, A. V. Oginov, A. S. Rusetskiy, V. A. Ryabov, and K. V. Shpakov, Phys. Rev. Lett. 111, 115003 (2013).

    Article  ADS  Google Scholar 

  13. A. V. Shelobolin, Plasma Phys. Rep. 29, 166 (2003).

    Article  ADS  Google Scholar 

  14. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

  15. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  16. S. M. Grach, E. N. Sergeev, E. V. Mishin, and A. V. Shindin, Phys. Usp. 59, 1091 (2016).

    Article  ADS  Google Scholar 

  17. Yu. V. Afanas’ev, E. G. Gamalii, N. N. Demchenko, and V. B. Rozanov, Tr. FIAN 134, 32 (1982).

    Google Scholar 

  18. A. N. Kondratenko, Plasma Waveguides (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  19. Yu. A. Anan’ev, Optical Cavities and the Problem of Angular Divergence of Laser Radiation (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  20. A. L. Mikaelyan, M. L. Ter-Mikaelyan, and Yu. G. Turkov, Solid-State Optical Generators (Sovetskoe Radio, Moscow, 1967) [in Russian].

    Google Scholar 

  21. G. M. Zverev, Yu. D. Golyaev, E. A. Shalaev, and A. A. Shokin, Yttrium Aluminum Garnet Lasers (Radio i Svyaz’, Moscow, 1985) [in Russian].

    Google Scholar 

  22. S. P. Khromov and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  23. J. A. Chalmers, Atmospheric Electricity (Pergamon, Oxford, 1967).

    Google Scholar 

  24. A. A. Vedenov, Book of Plasma Physics Problems (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-02-00366.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Sklizkov or A. V. Shelobolin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sklizkov, G.V., Shelobolin, A.V. Giant Jets as Higher Transverse Modes of an Open Cavity. Plasma Phys. Rep. 45, 863–870 (2019). https://doi.org/10.1134/S1063780X19080099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19080099

Navigation