Skip to main content
Log in

Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

This article is a continuation of the authors’ previous contribution. Plasma-activated water (PAW) prepared by exposure to the point-to-plane dc corona discharge was analyzed, and its biological effect tested on bacteria in planktonic and biofilm forms. Hydrogen peroxide and nitric acid were found as active components of PAW, although the presence of another unknown compound cannot be excluded unambiguously. PAW inhibits rapidly planktonic Gram-positive bacteria, whereas the inhibition of Gram-negative ones is somewhat slower. In biofilm form, this activity was not observed, so that PAW is not able to disinfect bacterial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Julák, A. Hujacová, V. Scholtz, J. Khun, and K. Holada, Plasma Phys. Rep. 44, 125 (2018).

    Article  ADS  Google Scholar 

  2. P. Lu, D. Boehm, P. Bourke, and P. J. Cullen, Plasma Process. Polym. 14 (8), 1600207 (2017).

    Article  Google Scholar 

  3. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, et al., Plasma Sources Sci. Technol. 25, 053002 (2016).

    Article  ADS  Google Scholar 

  4. J. B. Fox, Jr., Anal. Chem. 51, 1493 (1979).

    Article  Google Scholar 

  5. N. Patel, P. V. Oudemands, B. I. Hillma, and D. Y. Kobayashi, Anton. van Lee. 103, 1271 (2013).

    Article  Google Scholar 

  6. L. Wakelin, A. Adams, C. Hunter, and M. Waring, Biochemistry 20, 5779 (1981).

    Article  Google Scholar 

  7. J. Santhanalakshmi and S. Balaji, Colloids Surf. A 186, 173 (2001).

    Article  Google Scholar 

  8. W. Sun, J. Han, Q. Li, and K. Jiao, South African J. Chem. 60, 42 (2007).

    Google Scholar 

  9. G. M. Eisenberg, Ind. Eng. Chem. Anal. Ed. 15, 327 (1943).

    Article  Google Scholar 

  10. Methods for Chemical Analysis of Water and Wastes (US Environmental Protection Agency, Cincinnati, 1983), Method No. 330.5.

  11. H. Bader and J. Hoigné, Water Res. 15, 449 (1981).

    Article  Google Scholar 

  12. J. Majewski, Electr. Rev. 88, 253 (2012).

    Google Scholar 

  13. Z. Machala, B. Tarabová, K. Hensel, E. Špetlíková, L. Šikurová, and P. Lukeš, Plasma Process. Polym. 11, 649 (2013).

    Article  Google Scholar 

  14. J. Julák, V. Scholtz, S. Kotúčová, and O. Janoušková, Phys. Medica 28, 230 (2012).

    Article  Google Scholar 

  15. DIN EN 26777 (Water quality; determination of nitrite; molecular absorption spectrometric method ISO 6777:1984; German version EN 26777, 1993).

  16. M. J. Pavlovich, Y. Sakiyama, D. S. Clark, and D. B. Graves, Plasma Process. Polym. 10, 1051 (2013).

    Article  Google Scholar 

  17. Z. Kovalová, K. Tarabová, K. Hensel, and Z. Machala, Eur. Phys. J. Appl. Phys. 61, 24306 (2013).

    Article  ADS  Google Scholar 

  18. R. Matthes, I. Koban, C. Bender, K. Masur, E. Kindel, K.-D. Weltmann, T. Kocher, A. Kramer, and N.-O. Hübner, Plasma Process. Polym. 10, 161 (2013).

    Article  Google Scholar 

  19. Z. Kovalová, M. Zahoran, A. Zahoranová, and Z. Machala, J. Phys. D 47, 224014 (2014).

    Article  ADS  Google Scholar 

  20. A. J. Zelaya, G. Stough, N. Rad, K. Vandervoort, and G. Brelles-Mariño, IEEE Trans. Plasma Sci. 38, 3398 (2010).

    Article  ADS  Google Scholar 

  21. S. A. Ermolaeva, A. F. Varfolomeev, M. Y. Chernukha, D. S. Yurov, M. M. Vasiliev, A. A. Kaminskaya, M. M. Moisenovich, J. M. Romanova, A. N. Murashev, I. I. Selezneva, T. Shimizu, E. V. Sysolyatina, I. A. Shaginyan, O. F. Petrov, E. I. Mayevsky, et al., J. Med. Microbiol. 60, 75 (2011).

    Article  Google Scholar 

  22. G. Brelles-Mariño, J. Bioprocess. Biotech. 2, 1 (2012).

    Google Scholar 

  23. K. G. Vandervoort and G. Brelles-Mariño, PLOS ONE 9, e108512 (2014).

    Google Scholar 

  24. G. Brelles-Mariño, in Encyclopedia of Plasma Technology, Ed. by J. L. Shoteh (CRC, Boca Raton, FL, 2016), p. 3.

  25. E. Sysolyatina, A. Mukhachev, M. Yurova, M. Grushin, V. Karalnik, A. Petryakov, N. Trushkin, S. Ermolaeva, and Y. Akishev, Plasma Process. Polym. 11, 315 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Julák.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 9, pp. 706–713.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozák, P., Scholtz, V., Khun, J. et al. Further Contribution to the Chemistry of Plasma-Activated Water: Influence on Bacteria in Planktonic and Biofilm Forms. Plasma Phys. Rep. 44, 799–804 (2018). https://doi.org/10.1134/S1063780X18090040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090040

Navigation