Skip to main content
Log in

Formation of Wide Streamers during a Subnanosecond Discharge in Atmospheric-Pressure Air

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental and computational studies of a subnanosecond breakdown of atmospheric-pressure air in a nonuniform electric field. It is shown that the ionization waves (streamers) formed in the prebreakdown stage have a nearly spherical or conical shape. The diameter of the streamer in its widest part is found to increase with increasing voltage and discharge gap length. For a rise time of the voltage pulse of ≈0.5 ns and its amplitude of ≈250 kV, streamers about 8 cm in diameter were observed in a 7-cm-long gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kanmae, H. C. Stenbaek-Nielsen, M. G. McHarg, and R. K. Haaland, J. Phys. D 45, 275203 (2012).

    Article  Google Scholar 

  2. T. M. P. Briels, J. Kos, G. J. J. Winands, E. M. van Veldhuizen, and U. Ebert, J. Phys. D 41, 234004 (2008).

    Article  ADS  Google Scholar 

  3. G. J. J. Winands, Z. Liu, A. J. M. Pemen, E. J. M. van Heesch, and K. Yan, J. Phys. D 41, 234001 (2008).

    Article  ADS  Google Scholar 

  4. S. Chen, R. Zeng, and C. Zhuang, J. Phys. D 46, 375203 (2013).

    Article  Google Scholar 

  5. G. V. Naidis, Phys. Rev. E 79, 057401 (2009).

    Article  ADS  Google Scholar 

  6. A. Komuro, R. Ono, and T. Oda, Plasma Sources Sci. Technol. 22, 045002 (2013).

    Article  ADS  Google Scholar 

  7. N. Yu. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci. 44, 899 (2016).

    Article  ADS  Google Scholar 

  8. P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D 42, 175202 (2009).

    Article  ADS  Google Scholar 

  9. A. Starikovskiy, IEEE Trans. Plasma Sci. 39, 2602 (2011).

    Article  ADS  Google Scholar 

  10. P. Tardiveau, L. Magne, E. Marode, K. Ouaras, P. Jeanney, and B. Bournonville, Plasma Sources Sci. Technol. 25, 054005 (2016).

    Article  ADS  Google Scholar 

  11. A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D. A. Xu, C. O. Laux, and P. Vervisch, Plasma Sources Sci. Technol. 26, 045012 (2017).

    Article  ADS  Google Scholar 

  12. F. Pechereau, P. Le Delliou, J. Jansky, P. Tardiveau, S. Pasquiers, and A. Bourdon, IEEE Trans. Plasma Sci. 42, 2346 (2014).

    Article  ADS  Google Scholar 

  13. E. Marode, Ph. Dessante, and P. Tardiveau, Plasma Sources Sci. Technol. 25, 064004 (2016).

    Article  ADS  Google Scholar 

  14. N. Yu. Babaeva and G. V. Naidis, Phys. Plasmas 23, 083227 (2016).

    Article  Google Scholar 

  15. F. Pechereau, Z. Bonaventura, and A. Bourdon, Plasma Sources Sci. Technol. 25, 044004 (2016).

    Article  ADS  Google Scholar 

  16. D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, and M. I. Lomaev, JETP Lett. 106, 653 (2017).

    Article  ADS  Google Scholar 

  17. V. F. Tarasenko, S. B. Alekseev, I. D. Kostyrya, V. M. Orlovskii, and V. S. Skakun, Russ. Phys. J. 47, 220 (2004).

    Article  Google Scholar 

  18. I. D. Kostyrya, V. M. Orlovskii, V. F. Tarasenko, F. N. Tkachev, and S. I. Yakovlenko, Tech. Phys. 55, 881 (2005).

    Article  Google Scholar 

  19. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Russ. Phys. J. 60, 1308 (2017).

    Article  Google Scholar 

  20. V. M. Efanov, M. V. Efanov, A. V. Komashko, A. V. Kirilenko, P. M. Yarin, and S. V. Zazoulin, in Ultra-Wideband, Short Pulse Electromagnetics 9, Ed. by F. Sabath, D. V. Giri, F. Rachidi-Haeri, and A. Kaelin (Springer, New York, 2010), p.301.

  21. S. V. Korotkov, Yu. V. Aristov, A. K. Kozlov, D. A. Korotkov, A. G. Lyublinskii, and G. L. Spichkin, Instrum. Exp. Tech. 55, 605 (2012).

    Article  Google Scholar 

  22. V. F. Tarasenko, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. Rep. 42, 369 (2016).

    Article  ADS  Google Scholar 

  23. V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).

    Article  ADS  Google Scholar 

  24. Generation of Runaway Electrons and X-rays in Elevated-Pressure Gas Discharges, Ed. by V. F. Tarasenko (STT, Tomsk, 2015) [in Russian].

  25. S. Yatom, S. Yatom, J. Z. Gleizer, D. Levko, V. Vekselman, V. Gurovich, E. Hupf, Y. Hadas, and Y. E. Krasik, Europhys. Lett. 96, 65001 (2011).

    Article  ADS  Google Scholar 

  26. G. V. Naidis, V. F. Tarasenko, N. Yu. Babaeva, and M. I. Lomaev, Plasma Sources Sci. Technol. 27, 013001 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, G.V. Naidis, D.V. Beloplotov, I.D. Kostyrya, N.Yu. Babaeva, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 8, pp. 652–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Naidis, G.V., Beloplotov, D.V. et al. Formation of Wide Streamers during a Subnanosecond Discharge in Atmospheric-Pressure Air. Plasma Phys. Rep. 44, 746–753 (2018). https://doi.org/10.1134/S1063780X18080081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18080081

Navigation