Skip to main content
Log in

Dusty Plasma near the Martian Satellite Deimos

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The formation of dusty plasma in the near-surface layer above the illuminated part of the Deimos, the satellite of Mars, due to photoelectric and electrostatic processes is analyzed. Using a physicomathematical model self-consistently describing the densities of photoelectrons and dust grains above the illuminated part of Deimos, the distribution function of photoelectrons near its surface is calculated and the altitude dependences of the electric field, as well as of the number density, charge, and size of dust grains, are determined. It is noted that, due to the lower gravity, substantially larger grains are lifted above the surface of Deimos compared to those lifted above the Moon’s surface. In this case, adhesion, which is believed to significantly hamper the detachment of dust grains from the lunar surface, plays a substantially smaller role on Deimos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Thomas, Icarus 40, 223 (1979).

    Article  ADS  Google Scholar 

  2. P. Thomas and J. Veverka, Icarus 42, 234 (1980).

    Article  ADS  Google Scholar 

  3. A. Zakharov, M. Horányi, P. Lee, O. Witasse, and F. Cipriani, Planet. Space Sci. 102, 171 (2014).

    Article  ADS  Google Scholar 

  4. T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Res. 37, 59 (2006).

    Article  ADS  Google Scholar 

  5. Z. Sternovsky, P. Chamberlin, M. Horányi, S. Robertson, and X. Wang, J. Geophys. Res. 113, A10104 (2008).

    Article  ADS  Google Scholar 

  6. T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).

    Article  ADS  Google Scholar 

  7. A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, Yu. N. Izvekova, S. I. Kopnin, and S. I. Popel, JETP Lett. 95, 182 (2012).

    Article  ADS  Google Scholar 

  8. S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Solar Syst. Res. 47, 419 (2013).

    Article  ADS  Google Scholar 

  9. E. A. Lisin, V. P. Tarakanov, O. F. Petrov, S. I. Popel’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and V. E. Fortov, JETP Lett. 98, 664 (2013).

    Article  ADS  Google Scholar 

  10. S. I. Popel, A. P. Golub’, Yu. N. Izvekova, V. V. Afonin, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, E. A. Lisin, and O. F. Petrov, JETP Lett. 99, 115 (2014).

    Article  ADS  Google Scholar 

  11. T. I. Morozova, S. I. Kopnin, and S. I. Popel, Plasma Phys. Rep. 41, 799 (2015).

    Article  ADS  Google Scholar 

  12. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015).

    Article  ADS  Google Scholar 

  13. S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Plasma Phys. Rep. 42, 543 (2016).

    Article  ADS  Google Scholar 

  14. S. I. Popel, A. P. Golub’, E. A. Lisin, Yu. N. Izvekova, B. Atamaniuk, G. G. Dol’nikov, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 103, 563 (2016).

    Article  ADS  Google Scholar 

  15. S. I. Popel, A. P. Golub’, L. M. Zelenyi, and M. Horányi, JETP Lett. 105, 635 (2017).

    Article  ADS  Google Scholar 

  16. S. I. Popel and T. I. Morozova, Plasma Phys. Rep. 43, 566 (2017).

    Article  ADS  Google Scholar 

  17. S. I. Popel, A. P. Golub’, A. V. Zakharov, and L. M. Zelenyi, JETP Lett. 106, 485 (2017).

    Article  ADS  Google Scholar 

  18. S. Soter, Report No. 462 (Cornell Center for Radiophysics and Space Research Physics, Ithaca, NY, 1971).

  19. E. Walbridge, J. Geophys. Res. 78, 3668 (1973).

    Article  ADS  Google Scholar 

  20. R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Particle Interactions with Surfaces in Space, Ed. by R. J. L. Grard (Reidel, Dordrecht, 1973), p.389.

  21. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

    Article  ADS  Google Scholar 

  22. E. K. Kolesnikov and A. S. Manuilov, Astron. Rep. 26, 602 (1982).

    Google Scholar 

  23. R. J. L. Grard and J. K. E. Tunaley, J. Geophys. Res. 76, 2498 (1971).

    Article  ADS  Google Scholar 

  24. E. K. Kolesnikov and A. B. Yakovlev, Solar Syst. Res. 31, 62 (1997).

    ADS  Google Scholar 

  25. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, RG2006 (2007).

    Article  ADS  Google Scholar 

  26. C. M. Hartzell and D. J. Scheeres, Planet. Space Sci. 59, 1758 (2011).

    Article  ADS  Google Scholar 

  27. A. V. Krivov and D. P. Hamilton, Icarus 128, 335 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Original Russian Text © S.I. Popel, A.P. Golub’, L.M. Zelenyi, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 8, pp. 635–641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popel, S.I., Golub’, A.P. & Zelenyi, L.M. Dusty Plasma near the Martian Satellite Deimos. Plasma Phys. Rep. 44, 723–728 (2018). https://doi.org/10.1134/S1063780X18080044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18080044

Navigation