Skip to main content
Log in

Analysis and Modeling of Lithium Flows in Porous Materials

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

One of the primary conditions necessary for the success of magnetic fusion reactors is the ability to mitigate damage to the first wall during ELMs and plasma disruptions. A potential solution involves the use of flowing liquid metals such as lithium as a first wall, but ensuring its stability under the extreme environments in the reactor would be imperative. The conditions leading to instabilities on the free surface of flowing liquid lithium (LL) layers on a substrate and in a porous material are investigated using both analytical methods and computational modeling, with consideration for the effects of LL velocity, LL layer thickness, substrate porosity, LL permeability, and hydrogen (H) plasma velocity. Linear stability analysis is used to predict the critical velocity and wavelength-dependence of wave growth, as well as the onset of instability. The modeling of LL flows is performed on a flat substrate and in a porous material for various LL thicknesses, LL and H plasma velocities to analyze the conditions leading to droplet formation and ejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Abdou, A. Ying, N. Morley, K. Gulec, S. Smolentsev, M. Kotschenreuther, S. Malang, S. Zinkle, T. Rognlien, P. Fogarty, B. Nelson, R. Nygren, K. McCarthy, M. Z. Youssef, N. Ghoniem, et al., Fusion Eng. Des. 54, 181 (2001).

    Article  Google Scholar 

  2. D. N. Ruzic, M. Szott, C. Sandoval, M. Christenson, P. Fiflis, S. Hammouti, K. Kalathiparambil, I. Shchelkanov, D. Andruczyk, R. Stubbers, C. Joel Foster, and B. Jurczyk, Nucl. Mater. Energy 12, 1324 (2017).

    Article  Google Scholar 

  3. V. A. Evtikhin, I. E. Lyublinski, A. V. Vertkov, S. V. Mirnov, V. B. Lazarev, N. P. Petrova, S. M. Sotnikov, A. P. Chernobai, B. I. Khripunov, V. B. Petrov, D. Yu. Prokhorov, and V. M. Korzhavin, Plasma Phys. Controlled Fusion 44, 955 (2002).

    ADS  Google Scholar 

  4. V. A. Evtikhin, I. E. Lyublinski, A. V. Vertkov, V. G. Belan, I. K. Konkashbaev, and L. B. Nikandrov, J. Nucl. Mater. 271, 396 (1999).

    Article  ADS  Google Scholar 

  5. V. A. Evtikhin, I. E. Lyublinski, A. V. Vertkov, E. A. Azizov, S. V. Mirnov, V. B. Lazarev, S. M. Sotnikov, V. M. Safronov, A. S. Prokhorov, and V. M. Korzhavin, Plasma Sci. Technol. 6, 2291 (2004).

    Article  ADS  Google Scholar 

  6. M. A. Jaworski, A. Brooks, R. Kaita, N. Lopes-Cardozo, J. Menard, M. Ono, P. Rindt, and K. Tresemer, Fusion Eng. Des. 112, 93 (2016).

    Article  Google Scholar 

  7. P. Rindt, N. J. L. Cardozo, J. A. W. van Dommelen, R. Kaita, and M. A. Jaworski, Fusion Eng. Des. 112, 204 (2016).

    Article  Google Scholar 

  8. V. A. Evtikhin, I. E. Lyuklinsky, A. V. Vertkov, L. I. Ivanov, Y. P. Ivanov, O. N. Krokhin, V. Y. Nikulin, S. N. Polukhin, T. V. Safronova, and A. A. Tikhomirov, Nukleonika 46, S113 (2001).

    Google Scholar 

  9. M. Narula, A. Ying, and M. A. Abdou, Fusion Sci. Technol. 47, 564 (2005).

    Article  Google Scholar 

  10. T. Kanemura, H. Kondo, N. Yamaoka, S. Miyamoto, M. Ida, H. Nakamura, I. Matsushita, T. Muroga, and H. Horiike, Fusion Eng. Des. 82, 2550 (2007).

    Article  Google Scholar 

  11. S. Yoshihashi, T. Masaoka, E. Hoashi, T. Okita, H. Kondo, T. Kanemura, N. Yamaoka, and H. Horiike, Fusion Eng. Des. 102, 108 (2016).

    Article  Google Scholar 

  12. S. Gordeev, V. Heinzel, and R. Stieglitz, Int. J. Heat Fluid 43, 285 (2013).

    Article  Google Scholar 

  13. W. Y. Xu, D. Curreli, and D. N. Ruzic, Fusion Eng. Des. 89, 2868 (2014).

    Article  Google Scholar 

  14. G. V. Miloshevsky and A. Hassanein, Nucl. Fusion 50, 115005 (2010).

    Article  ADS  Google Scholar 

  15. Y. Shi, G. Miloshevsky, and A. Hassanein, J. Nucl. Mater. 412, 123 (2011).

    Article  ADS  Google Scholar 

  16. G. Miloshevsky and A. Hassanein, Nucl. Fusion 54, 033008 (2014).

    Article  ADS  Google Scholar 

  17. G. Miloshevsky and A. Hassanein, Nucl. Fusion 54, 043016 (2014).

    Article  ADS  Google Scholar 

  18. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 (1998).

    Article  ADS  Google Scholar 

  19. M. H. O. Allah, Appl. Math. Comput. 217, 7920 (2011).

    MathSciNet  Google Scholar 

  20. S. D. Suraj, A. Lakshman, and F. T. Mario, Comput. Sci. Disc. 5, 014016 (2012).

    Article  Google Scholar 

  21. E. Berberovic, N. P. van Hinsberg, S. Jakirlic, I. V. Roisman, and C. Tropea, Phys. Rev. E 79, 036306 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Q. Raeini, M. J. Blunt, and B. Bijeljic, J. Comput. Phys. 231, 5653 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Miloshevsky and A. Hassanein, J. Nucl. Mater. 438, S155 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Miloshevsky.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 7, pp. 593–600.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolph, J., Miloshevsky, G. Analysis and Modeling of Lithium Flows in Porous Materials. Plasma Phys. Rep. 44, 685–691 (2018). https://doi.org/10.1134/S1063780X1807005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1807005X

Navigation