Skip to main content
Log in

Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

    Article  ADS  Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  3. A. M. Ignatov, Bull. Lebedev. Phys. Inst., No. 2, 18 (1995).

    Google Scholar 

  4. A. M. Ignatov, Plasma Phys. Rep. 22, 585 (1996).

    ADS  Google Scholar 

  5. Ya. K. Khodataev, R. Bingham, V. P. Tarakanov, and V. N. Tsytovich, Plasma Phys. Rep. 22, 932 (1996).

    ADS  Google Scholar 

  6. A. M. Ignatov, Plasma Phys. Rep. 24, 677 (1998).

    ADS  Google Scholar 

  7. V. N. Tsytovich, Phys. Usp. 50, 409 (2007).

    Article  ADS  Google Scholar 

  8. G.-L. Le Sage, in Nouveau Mémoires de L’Académie Royale des Sciences et des Belle-Lettres (Decker, Berlin, 1782), p. 404.

  9. R. Bingham, U. de Angelis, V. N. Tsytovich, and O. Havnes, Phys. Fluids B 4, 283 (1992).

    Article  ADS  Google Scholar 

  10. V. N. Tsytovich and K. Watanabe, Contrib. Plasma Phys. 43, 51 (2003).

    Article  ADS  Google Scholar 

  11. V. Tsytovich and N. Gusein-zade, Phys. Plasmas 21, 033705 (2014).

    Article  ADS  Google Scholar 

  12. A. Piel and A. Melzer, Plasma Phys. Controlled Fusion 44, R1 (2002).

    Article  ADS  Google Scholar 

  13. Sh. Amiranashvili, N. G. Gusein-zade, and A. Ignatov, Phys. Rev. A 59, 3098 (1999).

    Article  ADS  Google Scholar 

  14. Sh. G. Amiranashvili, N. G. Gousein-zade, and V. N. Tsytovich, Phys. Rev. E 64, 016407 (2001).

    Article  ADS  Google Scholar 

  15. N. G. Gusein-zade, V. N. Tsytovich, and Sh. G. Amiranashvili, Kratk. Soobshch. Fiz., No. 7, 11 (2006).

    Google Scholar 

  16. A. Melzer, M. Klindworth, and A. Piel, Phys. Rev. Lett. 87, 115002 (2001).

    Article  ADS  Google Scholar 

  17. V. N. Tsytovich, G. Morfill, and H. Tomas, Plasma Phys. Rep. 28, 623 (2002).

    Article  ADS  Google Scholar 

  18. V. N. Tsytovich, G. Morfill, and H. Tomas, Plasma Phys. Rep. 29, 1 (2003).

    Article  ADS  Google Scholar 

  19. V. N. Tsytovich, G. Morfill, and H. Tomas, Plasma Phys. Rep. 29, 895 (2003).

    Article  ADS  Google Scholar 

  20. V. N. Tsytovich, G. Morfill, and H. Tomas, Plasma Phys. Rep. 30, 816 (2004).

    Article  ADS  Google Scholar 

  21. Ya. L. Al’pert, A. V. Gurevich, and L. P. Pitaevskii, Space Physics with Artificial Sattelites (Nauka, Moscow, 1964; Consultants Bureau, New York, 1965).

    Google Scholar 

  22. J. Laframboise and L. Parker, Phys. Fluids 16, 629 (1973).

    Article  ADS  Google Scholar 

  23. J. R. Henrich, S.-H. Kim, and R. L. Merlino, Phys. Rev. E 94, 026403 (2011).

    Article  ADS  Google Scholar 

  24. A. D. Usachev, A. V. Zobnin, O. F. Petrov, V. E. Fortov, B. M. Annaratone, M. H. Thoma, H. Hufner, M. Kretschmer, M. Fink, and G. E. Morfill, Phys. Rev. Lett. 102, 045001 (2009).

    Article  ADS  Google Scholar 

  25. V. Nosenko, S. K. Zhdanov, S.-H. Kim, J. Heinrich, R. L. Merlino, and G. E. Morfill, Europhys. Lett. 88, 65001 (2009).

    Article  ADS  Google Scholar 

  26. Ya. K. Khodataev, R. Bingham, V. P. Tarakanov, V. N. Tsytovich, and G. E. Morfill, Phys. Scr. T 89, 95 (2001).

    Article  ADS  Google Scholar 

  27. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  28. B. M. Annaratone, T. Antonova, D. D. Goldbeck, H. M. Thomas, and G. E. Morfill, Plasma Phys. Controlled Fusion 46, B495 (2004).

    Article  Google Scholar 

  29. A. Melzer, B. Buttenschon, T. Miksch, M. Passvogel, D. Block, O. Arp, and A. Piel, Plasma Phys. Controlled Fusion 52, 124028 (2010).

    Article  ADS  Google Scholar 

  30. V. Tsytovich and G. Morfill, MPE Preprint (Max Planck Institute for Extraterrestrial Physics, Garching, 2013).

    Google Scholar 

  31. A. M. Ignatov, P. P. J. M. Schram, and S. A. Trigger, New J. Phys. 5, 34.1 (2003).

    Article  Google Scholar 

  32. A. M. Ignatov, Plasma Phys. Rep. 30, 228 (2004).

    Article  ADS  Google Scholar 

  33. A. M. Ignatov, Plasma Phys. Rep. 29, 296 (2003).

    Article  ADS  Google Scholar 

  34. I. Kourakis and P. K. Shukla, Phys. Lett. A 317, 156 (2003).

    Article  ADS  Google Scholar 

  35. W.-T. Juan, Z.-H. Huang, J.-W. Hsu, Y.-J. Lai, and I. Lin, Phys. Rev. E 58, R6947 (1998).

    Article  ADS  Google Scholar 

  36. V. N. Tsytovich, G. E. Morfill and N. Gusein-zade, in Proceedings of the 4th International Conference on Physics of Dusty Plasmas, Orlean, 2005, p. 215.

    Google Scholar 

  37. N. G. Gusein-zade and A. M. Ignatov, Plasma Phys. Rep. 32, 836 (2006).

    Article  ADS  Google Scholar 

  38. N. G. Gusein-zade and A. M. Ignatov, Plasma Phys. Rep. 33, 189 (2007).

    Article  ADS  Google Scholar 

  39. N. G. Gusein-zade and A. M. Ignatov, Three-Dimensional Structures in Complex Plasmas (MIREA, Moscow, 2011) [in Russian].

    Google Scholar 

  40. G. Ya. Lyubarskii, Theory of Groups and Its Applications in Physics (Fizmatlit, Moscow, 1958) [in Russian].

    Google Scholar 

  41. Y. Watanabe and M. Shratani, Plasma Sources Sci. Technol. 3, 286 (1994).

    Article  ADS  Google Scholar 

  42. V. N. Tsytovich, N. G. Gousein-zade, and G. E. Morfill, Phys. Plasmas 13, 033503 (2006).

    Article  ADS  Google Scholar 

  43. Sh. G. Amiranashvili, N. G. Gousein-zade, and V. N. Tsytovich, in Proceedings of the 3rd International Conference on Physics of Dusty Plasmas, Durban, 2002, p. 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.N. Tsytovich, N.G. Gusein-zade, A.M. Ignatov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 10, pp. 812–836.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsytovich, V.N., Gusein-zade, N.G. & Ignatov, A.M. Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures. Plasma Phys. Rep. 43, 981–1003 (2017). https://doi.org/10.1134/S1063780X17100063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17100063

Navigation