Skip to main content
Log in

Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge

  • Applied Physics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1–50 μs) and spatial (30–50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where “detached” shock waves form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ya. Min’ko, Obtaining and Studying Pulsed Plasma Flows (Nauka i Tekhnika, Minsk, 1970) [in Russian].

    Google Scholar 

  2. N. N. Ogurtsova, I. V. Podmoshensky, and V. M. Shelemina, Teplofiz. Vys. Temp. 6, 48 (1968).

    Google Scholar 

  3. S. Leonov, V. Nebolsin, and V. Shilov, in Proceedings of the 1st International Workshop on Prospective MHD Plasma Technologies and Aerospace Applications, Moscow, 1999, p. 58.

    Google Scholar 

  4. R. F. Avramenko, V. I. Nikolaeva, and L. P. Poskacheeva, in Laboratory Ball Lightning, Ed. by R. F. Avramenko, A. I. Klimov, and O. A. Sinkevich (Chemistry, Moscow, 1994), p. 15 [in Russian].

    Google Scholar 

  5. R. F. Avramenko, B. I. Bakhtin, V. I. Nikolaeva, L. P. Poskacheeva, and N. N. Shirokov, Sov. Phys. Tech. Phys. 35, 1396 (1990).

    Google Scholar 

  6. A. P. Ershov, E. B. Kolesnikov, I. B. Timofeev, V. A. Chernikov, S. N. Chuvashev, and V. M. Shibkov, High Temp. 45, 580 (2007).

    Article  Google Scholar 

  7. A. P. Ershov, I. B. Timofeev, S. N. Chuvashev, and V. M. Shibkov, in Laboratory Ball Lightning, Ed. by R. F. Avramenko, A. I. Klimov, and O. A. Sinkevich (Chemistry, Moscow, 1994), p. 112 [in Russian].

    Google Scholar 

  8. A. P. Ershov, V. V. Rozanov, N. N. Sisoev, I. B. Timofeev, S. N. Chuvashev, and V. M. Shibkov, Fiz. Gidrodin., No. 4, 1 (1994).

    Google Scholar 

  9. A. S. Pashchina, A. I. Klimov, and A. V. Efimov, in Proceedings of the 52nd AIAA Aerospace Science Meeting, Reston, VA, 2014, Paper AIAA 2014-0517.

    Google Scholar 

  10. S. B. Leonov and G. A. Lukyanov, Prikl. Mekh. Tekh. Fiz., No. 5, 13 (1994).

    Google Scholar 

  11. A. S. Pashchina and A. I. Klimov, Khim. Fiz. 33 (2), 78 (2014).

    Google Scholar 

  12. A. Ya. Ender, V. I. Kuznetsov, and I. N. Kolyshkin, Tech. Phys. 60, 1720 (2015).

    Article  Google Scholar 

  13. A. F. Alexandrov, N. Butilkina, I. A. Gudilin, A. A. Gudilin, A. P. Ershov, L. P. Poskacheeva, V. M. Shibkov, S. N. Chuvashev, and U. Yusupaliev, Technical Report No. 532 (MNTP Center & NIITP, Moscow, 1990) [in Russian].

    Google Scholar 

  14. O. A. Bashutin, E. D. Vovchenko, S. K. Dimitrov, S. K. Jdanov, D. L. Kirko, A. S. Luts’ko, A.V. Makhin, S. G. Mikhin, D. V. Mozgrin, A. P. Palov, V. V. Pletnev, A. S. Savelov, D. V. Samsonov, V. M. Smirnov, V. G. Tel’kovsky, et al., Technical Report, Subject No. 88-3-021-471 (MIFI, Moscow, 1990) [in Russian].

    Google Scholar 

  15. A. S. Pashchina, A. V. Efimov, and V. F. Chinnov, High Temp. 54, 488 (2016).

    Article  Google Scholar 

  16. E. I. Asinovskii, A. V. Kirillin, and V. L. Nizovskii, Stabilized Electrical Arcs and Their Applications in Thermalphysic Experiments (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  17. J. C. Gibbings, J. Ingham, and D. Johnson, Technical Report No. 1197 (HM Stationery Office, Liverpool, 1972).

    Google Scholar 

  18. V. I. Zapryagaev and N. P. Kiselev, Prikl. Mekh. Tekh. Fiz. 50 (3), 104 (2009).

    Google Scholar 

  19. G. A. Luk’yanov, Supersonic Plasma Jets (Mashinostroyeniye, Moscow, 1985) [in Russian].

    Google Scholar 

  20. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  21. S. N. Belov, N. N. Ogurtsova, and I. V. Podmoshenskii, Zh. Prikl. Spektrosk. 22, 396 (1975).

    Google Scholar 

  22. N. G. Preobrazhenskii and V. V. Pikalov, Unstable Problems of Plasma Diagnostics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  23. Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (American Elsevier, New York, 1968).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pashchina.

Additional information

Original Russian Text © A.S. Pashchina, A.V. Efimov, V.F. Chinnov, A.G. Ageev, 2016, published in Prikladnaya Fizika, 2016, No. 2, pp. 29–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchina, A.S., Efimov, A.V., Chinnov, V.F. et al. Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge. Plasma Phys. Rep. 43, 796–800 (2017). https://doi.org/10.1134/S1063780X17070091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17070091

Navigation