Skip to main content
Log in

Influence of grain charge gradients on the dynamics of macroparticles in an electrostatic trap

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An analytical model of anomalous heating of charged dust grains (macroparticles) caused by their stochastic motion in a bounded plasma volume is proposed. Analytical expressions allowing one to describe the pumping (heating) of interacting grains with additional stochastic energy due to grain charge gradients are derived. The analytical results are verified by numerical simulation of the problem. It is shown that spatial variations in the charges of dust grains can lead to their anomalous heating in laboratory plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  2. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

  3. A. Ivlev, H. Löwen, G. Morfill, and C. P. Royall, Complex Plasmas and Colloidal Dispersions: Particle- Resolved Studies of Classical Liquids and Solids (World Scientific, Singapore, 2012).

    Book  Google Scholar 

  4. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).

  5. B. Pullman, Intermolecular Interactions: From Diatomics to Biopolymers (Wiley Interscience, Chichester, 1978).

    Google Scholar 

  6. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986; Nova Science, Commack, NY, 1989).

    Google Scholar 

  7. R. K. Dodd, J. C. Eilbeck, J. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1982).

    MATH  Google Scholar 

  8. T. Akhromeeva, S. Kurdyumov, and G. Malinetskii, Computers and Nomlinear Phenomena (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. Yu. V. Gerasimov, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, Sov. Tech. Phys. Lett. 24, 774 (1998).

    Article  Google Scholar 

  10. V. E. Fortov, E. A. Nefedov, V. A. Sinel’shchikov, A. D. Usachev, and A. V. Zobnin, Phys. Lett. A 267, 179 (2000).

    Article  ADS  Google Scholar 

  11. Advances in Dusty Plasma, Ed. by P. K. Shukla, D. A. Mendis, and T. Desai, (World Scientific, Singapore, 1997).

  12. O. S. Vaulina, E. V. Vasilieva, O. F. Petrov, and V. E. Fortov, Phys. Scr. 84, 025503 (2011).

    Article  ADS  Google Scholar 

  13. A. Aschinger and J. Winter, New J. Phys. 14, 093036 (2012).

    Article  ADS  Google Scholar 

  14. O. S. Vaulina, S. A. Khrapak, O. F. Petrov, and A. P. Nefedov, Phys. Rev. E 60, 5959 (1999).

    Article  ADS  Google Scholar 

  15. R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).

    Article  ADS  Google Scholar 

  16. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. Fortov, JETP 91, 1147 (2000).

    Article  ADS  Google Scholar 

  17. V. E. Fortov, O. S. Vaulina, O. F. Petrov, V. I. Molotkov, A. V. Chernyshev, A. M. Lipaev, G. Morfill, H. Thomas, H. Rotermell, S. Khrapak, Yu. P. Semenov, A. I. Ivanov, S. K. Krikalev, and Yu. P. Gidzenko, JETP 96, 704 (2003).

    Article  ADS  Google Scholar 

  18. O. S. Vaulina, A. A. Samarian, O. F. Petrov, B. James, and F. Melandso, Plasma Phys. Rep. 30, 918 (2004).

    Article  ADS  Google Scholar 

  19. G. E. Norman, V. V. Stegailov, and A. V. Timofeev, JETP 113, 877 (2011).

    Article  ADS  Google Scholar 

  20. J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).

    Article  ADS  Google Scholar 

  21. A. K. Mukhopadhyay and J. Goree, Phys. Rev. E 90, 013102 (2014).

    Article  ADS  Google Scholar 

  22. R. A. Quinn and J. Goree, Phys. Plasmas 7, 3904 (2000).

    Article  ADS  Google Scholar 

  23. V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and A. Piel, Phys. Rev. Lett. 80, 5345 (1998).

    Article  ADS  Google Scholar 

  24. O. S. Vaulina, JETP 122, 193 (2016).

    Article  ADS  Google Scholar 

  25. O. S. Vaulina, I. I. Lisina, and E. A. Lisin, JETP 121, 717 (2015).

    Article  ADS  Google Scholar 

  26. O. S. Vaulina, A. A. Samaryan, B. James, O. F. Petrov, and V. E. Fortov, JETP 96, 1037 (2003).

    Article  ADS  Google Scholar 

  27. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, A. A. Samaryan, and V. E. Fortov, JETP 93, 1184 (2001).

    Article  ADS  Google Scholar 

  28. V. V. Zhakhovskii, V. I. Molotkov, A. P. Nefedov, V. M. Torchinskii, A. G. Khrapak, and V. E. Fortov, JETP Lett. 66, 419 (1997).

    Article  ADS  Google Scholar 

  29. O. S. Vaulina, K. G. Adamovich, and I. E. Dranzhevskii, Plasma Phys. Rep. 31, 562 (2005).

    Article  ADS  Google Scholar 

  30. O. S. Vaulina, X. G. Adamovich, and S. V. Vladimirov, Phys. Scr. 79, 035501 (2009).

    Article  ADS  Google Scholar 

  31. O. S. Vaulina, I. I. Lisina, and K. G. Koss, Plasma Phys. Rep. 39, 394 (2013).

    Article  ADS  Google Scholar 

  32. I. I. Lisina and O. S. Vaulina, Phys. Rev. Lett. 103, 55002 (2003).

    Google Scholar 

  33. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  34. V. Molotkov, A. Nefedov, V. Torchinskii, V. E. Fortov, and A. G. Khrapak, JETP 89, 477 (1999).

    Article  ADS  Google Scholar 

  35. O. Vaulina, S. Khrapak, A. Samarian, and O. Petrov, Phys. Scr. 84, 292 (2000).

    Google Scholar 

  36. O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, Phys. Rev. Lett. 103, 035003 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Vaulina.

Additional information

Original Russian Text © O.S. Vaulina, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 3, pp. 293–302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaulina, O.S. Influence of grain charge gradients on the dynamics of macroparticles in an electrostatic trap. Plasma Phys. Rep. 43, 354–362 (2017). https://doi.org/10.1134/S1063780X17030163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17030163

Navigation