Skip to main content
Log in

Topical Problems of Beam Dynamics in the NICA Collider

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The NICA project is under development at the Joint Institute for Nuclear Research (Dubna, Russia). The accelerator complex is at the stage of step-wise assembly and commissioning. The facility is created for solution of fundamental problems in the field of the quark–gluon plasma and a number of applied experiments; it consists of two superconducting synchrotrons and a superconducting collider. Two linear accelerators play the role of injectors; particles from protons to heavy highly ionized ions are produced by ion sources. The main stage of the project will be commissioning of the Collider. Multiple studies of the beam dynamics at the design stage were the basis of design development of the Collider systems: the accelerator lattice, and the beam correction and control. The choice of its operation parameters is based on numerical calculation of movement of charged particles in the Collider rings, which were multiply performed by different groups of researchers using various methods, algorithms, and simulation codes. Some tasks still remain topical. Some of them are fundamental, and directly affect the understanding of the beam motion in the facility and require thorough study using three-dimensional particle tracking taking account of all the main physical phenomena in beams and nonlinearities in the system. In the NICA, such problems are collective effects, which are mainly the subject of this work. The motion of ions is considered, taking into account the action of space charge of the beam, intrabeam scattering, effects of interacting beams, and the electron cooling system. The problem of the interaction of the circulating beam with beam elements of the Collider and the effect of electron clouds are discussed. The first results of numerical calculations with three-dimensional particle tracking codes are presented. The paper describes the current state of numerical and theoretical calculations of the beam stability in NICA and the plans for solution of the uncompleted tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

REFERENCES

  1. V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, and G. Trubnikov, “Status of NICA,” Eur. Phys. J. Web of Conf. 182, 02063 (2018).

  2. A. Butenko et al., “First experiments with accelerated ion beams in the booster of NICA accelerator complex,” in Proceedings of 12th International Particle Accelerator Conference (IPAC 2021), Online Conference, Brazil.

  3. A. Butenko, S. Kostromin, I. Meshkov, A. Sidorin, E. Syresin, H. Khodzhibagiyan, and G. Trubnikov, “The NICA complex injection facility,” in Proceedings of 27th Russian Particle Accelerator Conference (RuPAC2021), Alushta, Russia, 2021.

  4. http://madx.web.cern.ch/madx/.

  5. D. Shatilov, “Beam-beam simulations at large amplitudes and lifetime determination,” Part. Accel. 52, 65–93 (1996).

    Google Scholar 

  6. https://www.mathcad.com.

  7. S. A. Kostromin, O. S. Kozlov, A. V. Tuzikov, and A. V. Philippov, “Optimization the optical structure of the NICA collider,” Phys. Part. Nucl. Lett. 17, 447—452 (2020).

    Article  Google Scholar 

  8. V. V. Altsybeyev, A. V. Butenko, V. N. Emelianenko, O. Kazinova, V. A. Kozynchenko, S. A. Kostromin, V. A. Mikhaylov, D. A. Ovsyannikov, A. V. Tuzikov, and H. G. Khodzhibagiyan, “Simulation of closed orbit correction for the Nuclotron booster,” Phys. Part. Nucl. Lett. 15, 854—857 (2018).

    Article  Google Scholar 

  9. Y. Chung, G. Decker, and K. Evans, “Closed orbit correction using singular value decomposition of the response matrix,” in Proceedings of International Conference on Particle Accelerators, Washington, DC, USA, 1993, Vol. 3, pp. 2263–2265.

  10. O. Kozlov, A. Butenko, S. Kostromin, I. Meshkov, A. Sidorin, and E. Syresin, “Correction of the magnetic field in the NICA collider,” in Proceedings of 26th Russian Particle Accelerator Conference (RuPAC2018), Protvino, Russia, 2018.

  11. B. Autin and Y. Marti, Preprint CERN ISR-MA/73-17 (CERN, 1973).

    Google Scholar 

  12. http://nucloweb.jinr.ru/nica/TDR/TDR_2020/Passport_Collider(eng).doc.

  13. D. A. Zolotykh et al., “Serial magnetic measurements of the NICA collider twin-aperture dipoles. The main results,” in Proceedings of 27th Russian Particle Accelerator Conference (RuPAC2021), Alushta, Russia, 2021, pp. 383–385.

  14. E. Forest, F. Schmidt, and E. McIntosh, Preprint CERN–SL–2002–044 (AP).

  15. J. Lascar, “The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones,” Icarus 88, 266 (1990).

    Article  ADS  Google Scholar 

  16. K. Hwang, Ch. Mitchell, and R. Ryne, “Rapidly converging chaos indicator for studying dynamic aperture in a storage ring with space charge,” Phys. Rev. ST Accel. Beams 23, 084601 (2020).

    Article  ADS  Google Scholar 

  17. D. Shatilov et al., “Application of frequency map analysis to beam-beam effects study in crab waist collision scheme,” Phys. Rev. ST Accel. Beams 14, 014001 (2011).

    Article  ADS  Google Scholar 

  18. N. Alekseev, A. Bolshakov, E. Mustafin, and P. Zenkevich, “Numerical code for Monte Carlo simulation of ion storage in space charge dominated beam physics for heavy ion fusion,” AIP Conf. Proc. 480, 31—41 (1999).

    Article  ADS  Google Scholar 

  19. A. Piwinsiki, Preprint DESY 98-179 (DESY, Hamburg, 1998).

    Google Scholar 

  20. http://hlit.jinr.ru.

  21. M. M. Shandov, V. V. Borisov, A. V. Butenko, O. Kazinova, H. G. Khodzhibagiyan, S. A. Kostromin, O. S. Kozlov, V. A. Mikhaylov, T. Parfylo, A. V. Philippov, E. M. Syresin, and A. V. Tuzikov, “Correctors magnets for the NICA booster and collider,” Phys. Part. Nucl. Lett. 17, 535—538 (2020).

    Article  Google Scholar 

  22. E. B. Levichev, Lectures on Nonlinear Dynamics of Particles in a Cyclic Accelerator (Institute of Nuclear Physics and Novosibirsk State Technical University, 2009) [in Russian].

    Google Scholar 

  23. I. N. Meshkov, “Luminosity of an ion collider,” Phys. Part. Nucl. 50, 663—682 (2019).

    Article  Google Scholar 

  24. J. D. Bjorken and S. K. Mtingwa, “Intrabeam scattering,” Part. Accel. 13, 115–143 (1983).

    Google Scholar 

  25. A. Piwinski, in Proceedings of 9th International Conference on High-energy Accelerators, Stanford, CA, USA, 1974, p. 405; M. Martini, Preprint CERN PS/84-9 (CERN, 1984); A. Piwinski, Preprint CERN 87-03 (CERN, 1987), p. 402; A. Piwinski, Preprint CERN 92-01 (CERN, 1992), p. 226.

  26. I. Borchardt, E. Karantzoulis, H. Mais, and G. Ripken, Preprint DESY 87-161 (DESY, Hamburg, 1987).

    Google Scholar 

  27. F. Willeke and G. Ripken, “Methods of beam optics,” AIP Conf. Proc. (New York) 184, 758 (1989).

  28. V. Lebedev and S. Bogacz, “Betatron motion with coupling of horizontal and vertical degrees of freedom,” J. Instrum. 5, P10010 (2010).

    Article  Google Scholar 

  29. V. Lebedev and V. Shiltsev, Accelerator Physics at the Tevatron Collider (Springer Science+Business Media, 2014).

  30. M. Conte and M. Martini, “Intrabeam scattering in the CERN antiproton accumulator,” Part. Accel. 17, 1—10 (1985).

    Google Scholar 

  31. M. Martini, “Intrabeam scattering,” in Proceedings of CERN Accelerator School on Intensity Limitations in Particle Beams, CERN, 2015, pp. 291—352.

  32. S. K. Mtingwa and A. V. Tollestrup, Preprint FERMILAB-PUB-89/224 (FNAL, 1989).

    Google Scholar 

  33. D. N. Shatilov, Internal reports on contracts with JINR (2019-2020).

  34. G. Ripken and F. Willeke, Preprint DESY 88–114 (DESY, Hamburg, 1988).

    Google Scholar 

  35. V. V. Smaluk, “Review of collective beam instabilities in electron-positron storage rings,” Phys. Part. Nucl. 43, 204—230 (2012).

    Article  Google Scholar 

  36. E. Métral et al., “Beam Instabilities in hadron synchrotrons,” IEEE Trans. Nucl. Sci. 63, 1001—1050 (2016).

    Article  ADS  Google Scholar 

  37. V. Smaluk, G. Bassi, A. Blednykh, and A. Khan, “Combined effect of chromaticity and feedback on transverse head-tail instability,” Phys. Rev. Accel. Beams. 24, 054401 (2021).

    Article  ADS  Google Scholar 

  38. F. J. Sacherer, “Transverse bunched beam instabilities–theory,” in Proceedings of 9th International Conference on High-energy Accelerators, Stanford, CA, USA, 1974, pp. 347–351.

  39. B. Chen and A. W. Chao, “Longitudinal head-tail instability in a non-harmonic potential well,” Part. Accel. 43, 77—91 (1993).

    Google Scholar 

  40. D. Boussard and T. Linnecar, “Longitudinal head-tail instability in the CERN-SPS collider,” in Proceedings of the 2nd European Particle Accelerator Conference, Nice, France, 1990, pp. 1560–1562.

  41. K. Ohmi, F. Zimmermann, and E. Perevedentsev, “Wake-field and fast head-tail instability caused by an electron cloud,” Phys. Rev. E 65, 016502 (2001).

    Article  ADS  Google Scholar 

  42. B. W. Zotter and S. A. Kheifets, Impedances and Wakes in High-Energy Particle Accelerators (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  43. V. V. Smaluk, Beam Diagnostics in Charged Particle Accelerators (Novosibirsk Gos. Univ., Novosibirsk, 2008).

    Google Scholar 

  44. https://www.3ds.com.

  45. E. Keil and W. Schnell, Preprint CERN ISR-TH-RF 69/48 (CERN, Geneva, 1969).

    Google Scholar 

  46. V. Lebedev, “Longitudinal stability in NICA: Impedances, bunched and unbunched beams,” NICA Internal Meeting (JINR, Dubna, 2021).

  47. F. Marhauser, “Higher order modes (HOMs),” in Proceedings of US Particle Accelerator School. Newport News, VA, 2015.

  48. S. Y. Zhang and W. T. Weng, Preprint BNL-48907 UC-414 AGS/AD/93-5 (BNL, 1993).

    Google Scholar 

  49. A. Wu Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, 1993).

    Google Scholar 

  50. V. Lebedev, “Transverse stability of continuous beam in NICA,” NICA Internal Meeting. (JINR, Dubna, 2021).

  51. G. Iadarola and G. Rumolo, “Electron cloud effects,” in Proceedings of ICFA Mini-Workshop on Impedances and Beam Instabilities in Particle Accelerators, Benevento, Italy, 2018, pp. 49–56.

  52. U. Iriso Ariz, PhD Thesis (Barcelona, Spain, 2005).

  53. W. Fischer, M. Blaskiewicz, J. Brennan, H. Huang, H.‑C. Hseuh, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, J. Wei, S. Y. Zhang, and U. Iriso, “Electron cloud observations and cures in the relativistic heavy ion collider,” Phys. Rev. ST Accel. Beams 11, 041002 (2008).

    Article  ADS  Google Scholar 

  54. H. Fukuma, “Electron cloud observations and predictions at KEKB, PEP-II and SuperB factories,” in Proceedings of ECLOUD’12: Joint INFN-CERN-EuCARDAccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d’Elba, Italy, 2012.

  55. A. V. Phillipov, V. A. Monchinsky, and A. B. Kuznetsov, “Estimation of electron-cloud effect at NICA collider,” Phys. Part. Nucl. Lett. 7, 483—486 (2010).

    Article  Google Scholar 

  56. A. V. PhilIipov, A. B. Kuznetsov, and I. N. Meshkov, “Electron-cloudless operation mode of the NICA collider, Phys. Part. Nucl. Lett. 8, 87—90 (2011).

    Google Scholar 

  57. I. N. Meshkov and A. V. Phillipov, “Influence of ion beams on vacuum conditions in the NICA collider,” Phys. Part. Nucl. Lett. 15, 805—808 (2018).

    Article  Google Scholar 

  58. O. Gröbner, “Beam induced multipacting,” in Proceedings of PAC’97, 1997, pp. 3589–3591.

  59. M. I. Bryzgunov et al., “Status of the high-voltage electron-cooling system of the NICA collider,” Phys. Part. Nucl. Lett. 17, 425—428 (2020).

    Article  Google Scholar 

  60. I. V. Gorelyshev, A. O. Sidorin, and G. V. Trubnikov, “Stochastic cooling in the startup and project configurations of the NICA collider equipment, Phys. Part. Nucl. Lett. 15, 762—766 (2018).

    Article  Google Scholar 

  61. A. O. Sidorin, G. V. Trubnikov, and N. A. Shurkhno, “Modeling the process of stochastic cooling using the Fokker-Planck equation. Designing of a stochastic cooling system for the Nuclotron,” Vestn. S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., No. 1, 70—86 (2012).

  62. S. A. Kostromin, I. N. Meshkov, A. O. Sidorin, A. V. Smirnov, G. V. Trubnikov. and N. Shurkhno, “Beam-cooling methods in the NICA project,” Phys. Part. Nucl. Lett. 9, 322—336 (2012).

    Article  Google Scholar 

  63. G. Trubnikov, A. Sidorin, and N. Shurkhno, “NICA cooling program,” Cybernetics Phys. 3, 137—146 (2014).

    Google Scholar 

  64. I. N. Meshkov, A. V. Philippov, E. M. Syresin, and N. V. Mityanina, “Electron cooling in the NICA project: Status and problems,” in Proceedings of the 12th Workshop on Beam Cooling and Related Topics COOL 2019, Novosibirsk, Russia, 2019.

  65. V. I. Kudelainen, I. N. Meshkov, and R. A. Salimov, Preprint No. 72-70, IYaF SO AN SSR (Institute of Nuclear Physics, Siberian Branch, USSR Academy of Sciences, 1970).

  66. V. V. Parkhomchuk and A. N. Skrinsky, “Electron cooling: 35 years of development”, Phys. Usp. 43, 433—452 (2000)

    Article  ADS  Google Scholar 

  67. I. N. Meshkov, A. O. Sidorin, I. A. Seleznev, A. V. Smirnov, et al., “BETACOOL program for simulation of beam dynamics in storage rings,” Nucl. Instrum. Methods Phys. Res., Sect. A 558, 325—328 (2006).

    Google Scholar 

  68. G. I. Budker, V. I. Kudelainen, I. N. Meshkov, V. G. Ponomarenko, S. G. Popov, R. A. Salimov, A. N. Skrinsky, and B. M. Smirnov, “Electron beam for electron cooling experiments”, in Proceedings of the 2nd All-Russia Conference on Charged Particle Accelerators (Nauka, Moscow, 1970), Vol. 1, pp. 31–33.

  69. I. N. Meshkov, “Electron cooling: Status and prospects,” Fiz. Elem. Chastits Atom. Yadra 5, 6 (1994).

    Google Scholar 

  70. V. I. Kudelainen, I. N. Meshkov, and R. A. Salimov, “Formation of an intense electron beam in magnetic field,” Zh. Tekh. Fiz. 41, 2294 (1971).

    Google Scholar 

  71. I. N. Meshkov, “Electron cooling friction force—comparison of different approaches,” in Proceedings of Workshop on Electron Cooling and Stochastic Cooling, Tokyo, Japan, 2016.

  72. S. A. Melnikov, I. N. Meshkov, E. V. Ahmanova, A. A. Baldin, A. V. Butenko, I. V. Gorelyshev. A. G. Kobets, D. S. Korovkin, O. S. Orlov, K. G. Osipov, A. V. Philippov, S. V. Semenov, A. S. Sergeev, A. A. Sidorin, A. O. Sidorin, and E. M. Syresin, “Electron cooler of the NICA booster and its applications,” in Proceedings of 13th Workshop on Beam Cooling and Related Topics COOL2021, Novosibirsk, Russia, 2021.

  73. Yu. N. Grigoryev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation by Cell Particle Methods (Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  74. V. L. Smirnov and S. B. Vorozhtsov, “SNOP–beam dynamics analysis code for compact cyclotrons,” in Proceedings of the 23rd Russian Accelerator Conference, RuPAC’2012, St. Petersburg, Russia, 2012, pp. 325–327.

  75. S. A. Kostromin, “Ion beam dynamics in NICA collider,” in Proceedings of 27th Russian Particle Accelerator Conference (RuPAC2021), Alushta, Russia, 2021.

  76. A. V. Butenko, A. R. Galimov, I. N. Meshkov, E. M. Syresin, I. Yu. Tolstikhina, A. V. Tuzikov, A. V. Phillipov, H. G. Khodzhibagiyan, and V. P. She-vel’ko, “Vacuum conditions and the lifetime of a single-charged helium ion beam in the Booster synchrotron of the NICA (first run),” JETP Lett. 113, 752—756 (2021).

    Article  Google Scholar 

  77. Research and engineering report. High-precision geodetic measurements in the control of the stability of the proton synchrotron magnet and the position of support equipment in the channels for transportation of beams into building 2005 of the Laboratory of High Energy Physics. 318-VI-PD-2. GSPI, 1985.

  78. Research and engineering report. High-precision geodetic measurements in the control of the stability of the proton synchrotron magnet of the Laboratory of High Energy Physics. 318-VI-PD-4. GSPI, 1990.

  79. Research and engineering report of StaDiO “Numerical simulation of the system “foundation—compound of buildings of the territory of the Laboratory of High Energy Physics of JINR (building 1, NICA facility, and adjacent buildings)” with consideration for geological and hydrogeological conditions. Analysis of the dynamic state of the system under various operation regimes and load scenarios.” Research and engineering report for contract No. 019-NICA-36 dated 26.12.2019.

  80. S. A. Kostromin and A. V. Philippov, “Intrabeam scattering calculations in NICA collider from 2010 to 2020,” NICA Meeting, 2020.

  81. A. O. Sidorin and A. V. Smirnov, “Long term beam dynamics simulation with the BETACOOL code,” in Proceedings of the 23rd Russian Accelerator Conference, RuPAC’2012, St. Petersburg, Russia, 2012.

  82. O. S. Kozlov, A. V. Butenko, H. G. Khodzhibagiyan, S. A. Kostromin, I. N. Meshkov, A. O. Sidorin, E. M. Syresin, and G. V. Trubnikov, “Optical structure and dynamic aperture of the NICA collider,” Phys. Part. Nucl. Lett. 15, 780—785 (2018)

    Article  Google Scholar 

  83. O. S. Orlov, A. G. Kobets, I. N. Meshkov, A. A. Sidorin, and V. I. Hilinov, “Setup for secondary electron-electron emission coefficient study,” in Proceedings of 26th Russian Particle Accelerator Conference RUPAC’2018, Protvino, Russia, 2018.

Download references

ACKNOWLEDGMENTS

We thank V.A. Lebedev for a detailed presentation of the theory of ion beam instability in a collider, V.V. Parkhomchuk for discussion of the problems of the electron cooling method, and D.N. Shatilov for the code Lifetrac and many detailed discussions of the methods and procedures of its application. Most of the results described in this study were obtained solely thanks to parallel calculations at the heterogeneous complex Govorun (LIT JINR), which reduced the required time of calculations by orders of magnitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Baldina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, O.S., Kostromin, S.A., Melnikov, S.A. et al. Topical Problems of Beam Dynamics in the NICA Collider. Phys. Part. Nuclei 53, 1021–1049 (2022). https://doi.org/10.1134/S1063779622050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622050057

Navigation