Skip to main content
Log in

Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105 years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4% of the total energy production at 90% C.L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Chapman, “Solar luminosity,” Encyclopedia of Planetary Science, Encyclopedia of Earth Science (Springer Netherlands, 1997), pp. 748–748.

    Chapter  Google Scholar 

  2. C. Fröhlich and J. Lean, “The sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976,” Geophys. Res. Lett. 25 (23), 4377–4380 (1998).

    Article  ADS  Google Scholar 

  3. J. N. Bahcall, Neutrino Astrophysics (Cambridge University Press, 1989).

    Google Scholar 

  4. N. Bahcall John, “The luminosity constraint on solar neutrino fluxes,” Phys. Rev. C 65, 025801 (2002).

    Article  ADS  Google Scholar 

  5. P. Foukal, C. Fröhlich, H. Spruit, and T. M. L. Wigley, “Variations in solar luminosity and their effect on the earth’s climate,” Nature 443, 161–166 (2006).

    Article  ADS  Google Scholar 

  6. G. Fiorentini and B. Ricci, “How long does it take for heat to flow through the Sun?,” Comm. Astroph. 1, 49–51 (1999).

    ADS  Google Scholar 

  7. G. Bellini et al., “Precision measurement of the Be7 Solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107 (14), 141302 (2011).

    Article  ADS  Google Scholar 

  8. E. Calabresu, G. Fiorentini, and M. Lissia, “Physics potentials of pp and pep solar neutrino uxes,” Astropart. Phys. 5 (2), 205–214 (1996).

    Article  ADS  Google Scholar 

  9. N. Bahcall John, “Why do solar neutrino experiments below 1-MeV?,” hep-ex/0106086.

  10. R. S. Raghavan, Discovery Potential of Low Energy Solar Neutrino Experiments Notes for APS-SAWG, March 2004.

    Google Scholar 

  11. J. N. Abdurashitov et al., “Measurement of the solar neutrino capture rate with gallium metal. iii. results for the 2002–2007 data-taking period,” Phys. Rev. C 80, 015807 (2009).

    Article  ADS  Google Scholar 

  12. F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, “Reanalysis of the gallex solar neutrino flux and source experiments,” Phys. Lett. B 685 (1), 47–54 (2010).

    Article  ADS  Google Scholar 

  13. C. Grieb, J. M. Link, and R. S. Raghavan, “Probing active to sterile neutrino oscillations in the lens detector,” Phys. Rev. D 75, 093006 (2007).

    Article  ADS  Google Scholar 

  14. R. S. Raghavan, “p p solar neutrino spectroscopy. P. Return of the indium detector,” Phys. Rev. Lett. (2001).

    Google Scholar 

  15. H. V. Klapdor-Kleingrothaus, “GENIUS—a new facility of non-accelerator particle physics,” Nucl. Phys. B—Proceedings Supplements, 100 (13), 350–355 (2001).

    Article  ADS  Google Scholar 

  16. Y. H. Huang, R. E. Lanou, H. J. Maris, G. M. Seidel, B. Sethumadhavan, and W. Yao, “Potential for precision measurement of solar neutrino luminosity by {HERON},” Astropart. Phys. 30 (1), 1–11 (2008).

    Article  ADS  Google Scholar 

  17. J. S. Adams, Y. H. Huang, Y. H. Kim, R. E. Lanou, H. J. Maris, and G. M. Seidel, “Low energy Solar neutrino detection,” The HERON Project. Chapter 8, 70–80 (2002).

    Google Scholar 

  18. K. Kawasaki et al., “Low energy Solar neutrino detection,” XMASS(XENON) II. Chapter 10, 91–97 (2002).

    Google Scholar 

  19. D. N. McKinsey, “Low energy Solar neutrino detection CLEAN: A self-shielding detector for characterizing the low energy Solar neutrino spectrum,” Chapter 12, 106–115 (2002).

    Google Scholar 

  20. A. Sarrat, “A low energy neutrino spectrometer,” Nucl. Phys. Proc. Suppl. 95, 177–180 (2001).

    Article  ADS  Google Scholar 

  21. H. Ejiri, “Low energy Solar neutrino detection, MOON(Mo observatory of neutrinos) for low energy neutrinos,” Chapter 4, 29–36 (2002).

    Google Scholar 

  22. C. Broggini, “Low energy Solar neutrino detection. MuNu as a Solar neutrino detector,” Chapter 14, 132–141 (2002).

    Google Scholar 

  23. D. N. McKinsey and J. M. Doyle, “Liquid helium and liquid neon-sensitive, low background scintillation media for the detection of low energy neutrinos,” J. Low Temp. Phys. 118 (3)–(4), 153–165 (2000).

    Article  ADS  Google Scholar 

  24. O. Ju. Smirnov, O. A. Zaimidoroga, and A. V. Derbin, “Search for solar pp neutrinos with an upgrade of ctf detector,” Phys. At. Nucl. 66, 712–723 (2003).

    Article  Google Scholar 

  25. A. V. Derbin, O. Yu. Smirnov, and O. A. Zaimidoroga, “On the possibility of detecting solar pp neutrino with the large-volume liquid organic scintillator detector,” Phys. At. Nucl. 67, 2066–2072 (2004).

    Article  Google Scholar 

  26. G. Bellini et al., “Final results of borexino phase-i on low-energy solar neutrino spectroscopy,” Phys. Rev. D 89, 112007 (2014).

    Article  ADS  Google Scholar 

  27. G. Bellini et al., “Neutrinos from the primary protonproton fusion process in the Sun,” Nature 512, 383–386 (2014).

    Article  ADS  Google Scholar 

  28. H. Back et al., “Borexino calibrations: Hardware, methods, and results,” J. Instrum. 7, 10018 (2012).

    Article  Google Scholar 

  29. O. Ju. Smirnov, “An approximation of the ideal scintillation detector line shape with a generalized gamma distribution,” Nucl. Instrum. Meth. A: Accelerators, Spectrometers, Detectors and Associated Equipment 595, 410–418 (2008).

    Article  ADS  Google Scholar 

  30. C. Arpesella et al., “First real time detection of Be Solar neutrinos by Borexino,” Phys. Lett. B 658, 101–108 (2008).

    Article  ADS  Google Scholar 

  31. C. Arpesella et al., “Direct measurement of the Be7 Solar neutrino flux with 192 days of Borexino data,” Phys. Rev. Lett. 101, 091302 (2008).

    Article  ADS  Google Scholar 

  32. G. Bellini et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 mev energy threshold in the borexino detector,” Phys. Rev. D 82, 033006 (2010).

    Article  ADS  Google Scholar 

  33. G. Bellini et al., “First evidence of solar neutrinos by direct detection in Borexino,” Phys. Rev. Lett. 108, 051302 (2012).

    Article  ADS  Google Scholar 

  34. N. Grevesse and A. J. Sauval, “Standard solar composition,” Space Sci Rev. 85 (1)–(2), 161–174 (1998).

    Article  ADS  Google Scholar 

  35. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, “The chemical composition of the Sun,” Annu. Rev. Astron. Astrophys. 47 (1), 481–522 (2009).

    Article  ADS  Google Scholar 

  36. B. Aharmim et al., “Low-energy-threshold analysis of the phase i and phase ii data sets of the Sudbury neutrino observatory,” Phys. Rev. C 81, 055504 (2010).

    Article  ADS  Google Scholar 

  37. B. Aharmim et al., “A search for neutrinos from the solar hep reaction and the diffuse supernova neutrino background with the Sudbury neutrino observatory,” Astrophys. J. 653 (2), 1545 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Smirnov.

Additional information

Talk at the International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics”, JINR, INR, 1 February–8 February 2015, Valday, Russia.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, O.Y., Agostini, M., Appel, S. et al. Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector. Phys. Part. Nuclei 47, 995–1002 (2016). https://doi.org/10.1134/S106377961606023X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961606023X

Navigation