Skip to main content
Log in

Quantum neural networks: Current status and prospects for development

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aeppli and T. Rosenbaum, in Quantum Annealing and Related Optimization Methods, Ed. by A. Das and K. Chakrabarti, Lect. Notes Phys. 679, pp 159–169 (2005).

  2. M. Altaisky, Quantum neural network, arxiv.org:quantph/0107012, 2001.

    Google Scholar 

  3. M. Altaisky and V. Rao, “Inverted mexican hat potential in activation of receptor cells,” Nonlinear Anal. B 10(5), 2961–1970 (2009).

    Article  MATH  Google Scholar 

  4. F. Beck, “Synaptic quantum tunnelling in brain activity,” Neuroquantology 6(2), 140–151 (2008).

    Google Scholar 

  5. F. Beck and J. Eccles, “Quantum aspects of brain activity and the role of consciousness,” PNAS 89, 11357–11361 (1992).

    Article  ADS  Google Scholar 

  6. L. Behera, I. Kar, and A. Elitzur “A recurent quantum neural network model to describe eye tracking of moving targets,” Found. Phys. Lett. 18,(4), 357–370 (2005).

    Article  MATH  Google Scholar 

  7. R. Chrisley, “Learning in non-superpositional quantum neurocomputers,” in Brain, Mind and Physics, Ed. by P. Pylkkänen and P. Pylkkmsterdam, 1997).

    Google Scholar 

  8. A. Barenco, D. Deutsch, E. Ekert, and R. Josza “Conditional quantum dynamics and quantum gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).

    Article  ADS  Google Scholar 

  9. D. Coopersmith, An Approximate Fourier Transform Useful in Quantum Factoring: Research Report RC19642 (IBM, 1994).

    Google Scholar 

  10. R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective (Springer, 2001).

    Book  Google Scholar 

  11. A. da Silva, W. de Oliveira, and T. Ludermir “Classical and superposed learning for quantum weightless neural networks,” Neurocomputing 75, 52–60 (2012).

    Article  Google Scholar 

  12. A. J. da Silva, W. R. de Oliveira, and T. B. Ludermir, “A weightless neural node based on a probabilistic quantum memory,” in SBRN, Ed. by T. B. Ludermir, K. Figueiredo, and C. E. Thomaz, (IEEE, 2010) pp. 259–264.

    Google Scholar 

  13. A. Das and B. Chakrabarti, “Colloquium: quantum annealing and analog quantum computation,” Rev. Mod. Phys. 80, 1061–1081 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. D. Deutsch, “Quantum computational networks,” Proc. Roy. Soc. Lond. A. 425, 73–90 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quantum computer,” Proc. Roy. Soc. Lond. A 400, 97–117 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. Roy. Soc. Lond. A 439, 553 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. H. Everett, ““Relative State” formulation of quantum mechanics,” Rev. Mod. Phys. 29, 451–462 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Ezhov, A. Nifanova, and D. Ventura, “Quantum associative memory with distributed queries,” Inf. Sci. 128(3–4), 271–293 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Fahri et al., “A quantum adiabatic evolution algorithm applied to random instances of NP-complete problem,” Science 292, 472–475 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  21. L. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).

    Article  ADS  Google Scholar 

  22. S. Gupta and R. Zia, “Quantum neural networks,” J. Comput. Syst. Sci. 63, 355–383, (2002); arXiv.org:quant-ph/0201144.

    Article  MathSciNet  Google Scholar 

  23. S. Hagan, S. R. Hameroff, and J. A. Tuszynski, “Quantum computation in brain microtubules: decoherence and biological feasibility,” Phys. Rev. E 65, 061901 (2002).

    Article  ADS  Google Scholar 

  24. S. Haykin, Neural Networks (Pearson Education, 1999).

    MATH  Google Scholar 

  25. D. Hebb, Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  26. J. J. Hopfield, “Neural networks and physical systems with emergent collective computation abilities,” PNAS 79(8), 2554–2558 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Li, F. Xiao, F. Shang et al., “A hybrid quantum-inspired neural networks with sequence inputs,” Neurocomputing 117(0), 81–90 (2013).

    Article  Google Scholar 

  28. K. Karimi, N. Dickson, F. Hamze, et al., “Investigating the performance of an adiabatic quantum optimization processor,” Quantum Inf. Process. 11(1), 77–88 (2012).

    Article  Google Scholar 

  29. V. Ivancevic and T. Ivancevic, Quantum Neural Computation (Springer, 2009).

    Google Scholar 

  30. V. Ivancevic and D. Reid, “Dynamics of confined crowds modelled using entropic stochastic resonance and quantum neural networks,” Int. J. Intell. Def. Support Syst. 2, 269–289 (2009).

    Google Scholar 

  31. V. Ivancevic and D. Reid, “Turbulence and shockwaves in crowd dynamics,” Nonlinear Dyn. 68, 285–304 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  32. S. John and T. Quang, “Photon-hopping conduction and collectively induced transparency in a photonic band gap,” Phys. Rev. A. 52, 4983–4088 (1995).

    Article  ADS  Google Scholar 

  33. M. Johnson et al., “Quantum annealing with manufactured spins,” Nature 473, 194–198 (2011).

    Article  ADS  Google Scholar 

  34. S. Kak, “On quantum neural computing,” Inf. Sci. 83, 143–160 (1995).

    Article  Google Scholar 

  35. N. Kouda, N. Matsui, and H. Nishimura, “Learning performance of neuron model based on quantum superposition,” in Proceedings of the 2000 IEEE International Workshop on Robot and Human Interactive Communications (IEEE, Osaka, 2000) pp.112–117.

    Google Scholar 

  36. N. Kouda, N. Matsui, and H. Nishimura, “Image compression by layered quantum neural networks,” Neural Process. Lett. 16(1), 67–80 (2002).

    Article  MATH  Google Scholar 

  37. F. Braakman, P. Barthelemy, C. Reichl, et al., “Longdistance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8(6), 432–437 (2013).

    Article  ADS  Google Scholar 

  38. A. Lupascu et al., “Quantum non-demolishing measurement of a superconducting two-level system,” Nat. Phys. 3, 119–125 (2007).

    Article  Google Scholar 

  39. A. Manju and M. Nigam, “Applications of quantum inspired computational intelligence: a survey,” Artif. Intell. Rev. 42(1), 79–156 (2012).

    Article  Google Scholar 

  40. R. Martoňak, G. Santoro, and E. Tosatti, “Quantum annealing by the path-integral Monte Carlo method: the two-dimensional random Ising model,” Phys. Rev. B 66, 094203 (2002).

    Article  ADS  Google Scholar 

  41. W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys. 5, 115–133 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  42. T. Menneer and A. Narayanan, “Quantum-inspired neural networks,” presented at NIPS’95(Carnegi Mellon Univ., Denver, CO, 1995).

    Google Scholar 

  43. T. Menneer, “Quantum artificial neural networks,” PhD Thesis (Univ. of Exeter, UK, 1998).

    Google Scholar 

  44. A. Mizel, D. A. Lidar, and M. Mitchell, “Simple proof of equivalence between adiabatic quantum computation and the circuit model,” Phys. Rev. Lett. 99, 070502 (2007).

    Article  ADS  Google Scholar 

  45. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, New York, 2000).

    MATH  Google Scholar 

  46. T. Nitta, “An extension of the back-propagation algorithm to complex numbers,” Neural Networks 10, 1397–1415 (1997).

    Article  Google Scholar 

  47. E. Behrman, L. Nash, J. Steck et al., “Quantum dot neural networks,” Inf. Sci. 128, 257 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Cabello, L. Danielsen, A. Lopez-Tarrida, and J. Portillo “Quantum social networks,” J. Math. Phys. A 45, 285101 (2012).

    MathSciNet  Google Scholar 

  49. N. Kouda, N. Matsui, H. Nishimura, and F. Peper “Qubit neural network and its learning efficinecy,” Neural Comput. Appl. 14, 114–121 (2005).

    Article  Google Scholar 

  50. T. F. Rønenow et al., “Defining and defecting quantum speedup.” arXiv.org:/quant-ph/1401.2910.

  51. F. Shafee, “Neural networks with quantum gated nodes,” Eng. Appl. Artif. Intell. 20, 429–437 (2007).

    Article  Google Scholar 

  52. I. Shariv and A. A. Friesem, “All-optical neural network with inhibitory neurons,” Opt. Lett. 14, 485–487 (1989).

    Article  ADS  Google Scholar 

  53. P. Shor, “Polynomial-time algorithm for prime factorization and discrete logarithms on a quantum computer,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE, Piscataway, NJ, 1994).

    Google Scholar 

  54. V. Smelianskiy et al., “A near-term quantum computing approach for hard computational problems in space exploration.” arXiv.org:1204.2821.

  55. R. Hanson, L. P. Kouwenhoven, J. R. Petta, et al. “Spins in few-electron quantum dots,” Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  56. J. Stolze and D. Suter, Quantum Computing: A Short Course from Theory to Experiment (Wiley-VCH, 2008).

    Google Scholar 

  57. M. Waseem, R. Ahmed, M. Irfan, and S. Qamar, “Three-qubit Grover’s algorithm using superconducting quantum interference devices in cavity QED,” Quantum Inf. Process. 12, 3649–3664 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  58. V. Vedral, A. Barenco, and A. Ekert, “Quantum network for elementary arithmetic operations,” Phys. Rev. A 54, 147–153 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  59. D. Ventura and T. Martinez, “An artificial neuron with quantum mechanical properties,” in Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, Norwich, UK, Ed. by G.D. Smith, N.C. Steele, and R.F. Albrecht (Springer, 1997) pp. 482–485.

    Google Scholar 

  60. D. Ventura and T. Martinez, “Quantum associative memory,” Inf. Sci. 124(1–4), 273–296 (2000).

    Article  MathSciNet  Google Scholar 

  61. G. Vitiello, “Dissipation and memory capacity in the quantum brain model,” Int. J. Mod. Phys. B 9, 973–989 (1995).

    Article  ADS  Google Scholar 

  62. A. Vlasov, “Quantum computations and images recognition,” 1997. arxiv.org:quant-ph/9703010.

    Google Scholar 

  63. Y. Wan, G. Ortiz, and P. Phillips, “Pair tunneling in semiconductor quantum dots,” Phys. Rev. Lett. 75, 2879–2882 (1995).

    Article  ADS  Google Scholar 

  64. F. Yoshihara, Y. Nakamura, and J. Tsai, “Correlated flux noise and decoherence in two inductively coupled flux qubits,” Phys. Rev. B 81, 132502 (2010).

    Article  ADS  Google Scholar 

  65. R. Zhou and Q. Ding, “Quantum m-p neural network,” Int. J. Theor. Phys. 46, 3209–3215 (2007).

    Article  MATH  Google Scholar 

  66. R. Zhou, N. Jiang, and Q. Ding, “Model and training QNN with weight,” Neural Process. Lett. 23, 261–269 (2006).

    Article  Google Scholar 

  67. R. Zhou, L. Qin, and N. Jiang, “Quantum perceptron network,” in Artificial Neural Networks-ICANN 2006, LNCS 4131, 651–657 (2006).

    Chapter  Google Scholar 

  68. M. Altaiskii and A. Bonyushkina, “Quantum neural networks,” Nelineinyi Mir 4(4-5), 238–245 (2006).

    Google Scholar 

  69. I. Kisel’, V. Neskoromnyi, and G. Ososkov, “Application of neural networks in experimental physics,” Fiz. Elem. Chastits At. Yadra 24, 1551–1595 (1993).

    Google Scholar 

  70. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  71. L. Landau and E. Lifshits, Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  72. N. Nikityuk, “Neural chips, neural computers, and their application in high and superhigh energy physics experiments,” Fiz. Elem. Chastits At. Yadra 32, 431–480 (2001).

    Google Scholar 

  73. S. Osovskii, Neural Networks for Information Processing (Finansy i Statistika, Moscow, 2004).

    Google Scholar 

  74. R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics (Popular Science) (Oxford Univ. Press, 1999).

    Google Scholar 

  75. V. Chavchanidze, “On spatial-temporal quantumwave processes in neural networks,” Soobshch. AN Gruzinskoi SSR 59(1), 37–40 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Altaisky.

Additional information

Original Russian Text © M.V. Altaisky, N.E. Kaputkina, V.A. Krylov, 2014, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014, Vol. 45, No. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaisky, M.V., Kaputkina, N.E. & Krylov, V.A. Quantum neural networks: Current status and prospects for development. Phys. Part. Nuclei 45, 1013–1032 (2014). https://doi.org/10.1134/S1063779614060033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614060033

Keywords

Navigation