Skip to main content
Log in

Structure of Metastable Sr0.8Dy0.2Co3 – δ Phases and Their Electrical and Magnetic Properties

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Polycrystalline Sr0.8Dy0.2Co3 – δ complex cobalt oxides with a different amount of oxygen (δ = 0.26, 0.44, 0.46) have been prepared by solid-state synthesis. An increase in oxygen deficiency causes the brownmillerite phase to appear in the perovskite structure, which significantly changes its properties. At δ = 0.46, the content of the brownmillerite phase reaches 38%. A comparative analysis of the magnetic and transport properties of synthesized samples has been carried out. The asymptotic Curie temperature changes sign from positive at δ = 0.26 to negative at δ = 0.46. The magnetoresistance of the sample with δ = 0.46 is negative and exceeds 40% at T = 10 K. The temperature dependence of resistivity is characteristic of semiconductors, and the absolute values for samples at low temperatures differ almost tenfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. G. H. Jonker and J. H. van Santen, Physica (Amsterdam, Neth.) 19, 120 (1953).

  2. J. B. Goodenough, J. Phys. Chem. Sol. 6, 287 (1958).

    Article  ADS  Google Scholar 

  3. S. V. Vonsovskii and M. S. Svirskii, Sov. Phys. JETP 20, 914 (1964).

    Google Scholar 

  4. A. K. Kundu and B. Raveau, arXiv: 1005.5426 (2010).

  5. D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem, and N. X. Phuc, Phys. Rev. B 59, 4189 (1999).

    Article  ADS  Google Scholar 

  6. S. Y. Istomin, O. A. Drozhzhin, G. Svensson, and E. V. Antipov, Solid State Sci. 6, 539 (2004).

    Article  ADS  Google Scholar 

  7. C. R. Dyck, Z. B. H. Yu, and V. D. Krstic, Solid State Ionics 171, 17 (2004).

    Article  Google Scholar 

  8. Q. Zhang, Y. Guo, J. Ding, and M. He, J. Solid State Electrochem. 24, 1487 (2020).

    Article  Google Scholar 

  9. J. W. Choi, J. H. Kang, H. J. Kim, and K. S. Yoo, J. Korean Ceram. Soc. 43, 758 (2006).

    Article  Google Scholar 

  10. Y. W. Zhang, F. L. Zeng, C. C. Yu, C. Z. Wu, W. Z. Ding, and X. G. Lu, Rare Met. 35, 723 (2016).

    Article  Google Scholar 

  11. A. V. Kovalevsky, A. V. Kharton, V. N. Tikhonovich, E. N. Naumovich, A. A. Tonoyan, O. P. Reut, and L. S. Boginsky, Mater. Sci. Eng. B 52, 105 (1998).

    Article  Google Scholar 

  12. Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu, P. Zhang, D. Liu, and J. Gui, ACS Sustainable Chem. Eng. 7, 2906 (2018).

    Article  Google Scholar 

  13. V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, and P. F. Kerko, J. Membr. Sci. 163, 307 (1999).

    Article  Google Scholar 

  14. Y. H. Lin, J. Lan, and C. Nan, Oxide Thermoelectric Materials (Wiley-VCH, Weinheim, 2019).

    Book  Google Scholar 

  15. M. James, T. Tedesco, D. J. Cassidy, and R. L. Withers, Mater. Res. Bull. 40, 990 (2005).

    Article  Google Scholar 

  16. I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky, V. Sikolenko, V. Efimov, A. Cervellino, and B. Raveau, J. Appl. Phys. 112, 013916 (2012).

  17. M. James et al., Phys. B (Amsterdam, Neth.) 385, 199 (2006).

  18. M. James, D. Cassidy, D. J. Goossens, and R. L. Withers, J. Solid State Chem. 177, 1886 (2004).

    Article  ADS  Google Scholar 

  19. S. N. Vereshchagin, L. A. Solovyov, E. V. Rabchevskii, V. A. Dudnikov, S. G. Ovchinnikovbc, and A. G. Anshits, Chem. Commun. 50, 6112 (2014).

    Article  Google Scholar 

  20. V. A. Dudnikov, Yu. S. Orlov, S. Yu. Gavrilkin, M. V. Gorev, S. N. Vereshchagin, L. A. Solovyov, N. S. Perov, and S. G. Ovchinnikov, J. Phys. Chem. C 120, 13443 (2016).

    Article  Google Scholar 

  21. S. N. Vereshchagin, V. A. Dudnikov, N. N. Shishkina, and L. A. Solovyov, Thermochim. Acta 655, 34 (2017).

    Article  Google Scholar 

  22. S. Vereshchagin, V. Dudnikov, Yu. Orlov, and L. Solovyov, J. Alloys Compd. 860, 158257 (2021).

  23. S. Fukushima, T. Sato, D. Akahoshi, and H. Kuwahara, J. Phys. Soc. Jpn. 78, 064706 (2009).

  24. V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, A. S. Fedorov, L. A. Solov’yov, S. N. Vereshchagin, A. T. Burkov, S. V. Novikov, S. Y. Gavrilkin, and S. G. Ovchinnikov, Ceram. Int. 44, 10299 (2018).

    Article  Google Scholar 

  25. S. N. Vereshchagin, L. A. Solov’yov, E. V. Rabchevskii, V. A. Dudnikov, S. G. Ovchinnikov, and A. G. Anshits, Kinet. Catal. 56, 640 (2015).

    Article  Google Scholar 

  26. A. Hassen, A. I. Ali, B. J. Kim, Y. S. Wu, S. H. Park, and B. G. Kim, J. Appl. Phys. 102, 123905 (2007).

  27. V. A. Dudnikov, Yu. S. Orlov, M. V. Bushinsky, L. A. Solovyov, S. N. Vereshchagin, S. Yu. Gavrilkin, A. Yu. Tsvetkov, M. V. Gorev, S. V. Novikov, O. S. Mantytskaya, and S. G. Ovchinnikov, J. Alloys Compd. 830, 154629 (2020).

  28. B. Raveau and M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics (Wiley, New York, 2012).

    Book  Google Scholar 

  29. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  30. A. V. Maklakova, A. S. Baten’kova, M. A. Vlasova, N. E. Volkova, L. Y. Gavrilova, and V. A. Cherepanov, Solid State Sci. 110, 106453 (2020).

  31. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  32. L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).

    Article  Google Scholar 

  33. K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Mater. Res. Bull. 40, 257 (2005).

    Article  Google Scholar 

  34. V. Cherepanov, T. Aksenova, E. Kiselev, and L. Gavrilova, Solid State Sci. 10, 438 (2008).

    Article  ADS  Google Scholar 

  35. Y. Takeda, R. Kanno, T. Takada, O. Yamamoto, M. Takano, and Y. Bando, Z. Anorg. Allgem. Chem. 540541, 259 (1986).

  36. C. de la Calle, A. Aguadero, J. A. Alonso, and M. T. Fernandez-Diaz, Solid State Sci. 10, 1924 (2008).

    Article  ADS  Google Scholar 

  37. F. Li and J. Fang, J. Magn. Magn. Mater. 324, 2664 (2012).

    Article  ADS  Google Scholar 

  38. J. Wu and C. Leighton, Phys. Rev. B 67, 174408 (2003).

  39. I. O. Troyanchuk, A. N. Chobot, A. V. Nikitin, O. S. Mantytskaya, L. S. Lobanovskii, and V. M. Dobryanskii, Phys. Solid State 57, 2427 (2015).

    Article  ADS  Google Scholar 

  40. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

Download references

Funding

Investigation was supported by the Russian Foundation for Basic Research (grant no. 19-03-00017). Thermal and X-ray diffraction studies were conducted in the framework of State Task 0287-2021-0013 for the Institute of Chemistry and Chemical Technologies, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Orlov.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikov, V.A., Vereshchagin, S.N., Solov’ev, L.A. et al. Structure of Metastable Sr0.8Dy0.2Co3 – δ Phases and Their Electrical and Magnetic Properties. J. Exp. Theor. Phys. 134, 290–299 (2022). https://doi.org/10.1134/S1063776122030037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030037

Navigation