Skip to main content
Log in

Analysis of Cobalt Intercalation under the Buffer Carbon Layer on a SiC(0001) Single Crystal

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the synthesis of the buffer carbon layer on a SiC(0001) single crystal and its subsequent intercalation with cobalt atoms. It is shown using X-ray photoelectron spectroscopy that the intercalation is accompanied with the formation of a surface cobalt silicide alloy under the quasi-free graphene. The data measured using angle-resolved photoelectron spectroscopy demonstrate the presence of a Dirac cone near the Fermi level, which confirms the formation of quasi-free graphene as a result of intercalation. The morphology and homogeneity of the resulting system have been investigated using atomic force microscopy and Raman spectroscopy. The features of the graphene band structure on possible cobalt silicide alloys have been investigated using the density functional theory. The calculations of the chemical shift of the 2p level of Si for cobalt silicides confirm the presence of CoSi and CoSi2 components in X-ray photoelectron spectroscopy data. It is shown that the formation of quasi-free graphene with a linear dispersion of the π states is possible only on the CoSi surface. In view of the importance of investigation of graphene on insulating substrates as well as unique properties of graphene in contact with magnetic metals, we hope that this study will make a contribution to further realization of graphene in spintronics and nanoelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. Sh. Chen, Q. Wu, C. Mishra, et al., Nat. Mater. 11, 203 (2012).

    Article  ADS  Google Scholar 

  3. F. Schwierz, Nat. Nanotech. 5, 487 (2010).

    Article  ADS  Google Scholar 

  4. W. Han, R. K. Kawakami, M. Gmitra, et al., Nat. Nanotechnol. 9, 794 (2014).

    Article  ADS  Google Scholar 

  5. G. Ruhl, S. Wittmann, M. Koenig, et al., Beilstein J. Nanotechnol. 8, 1056 (2017).

    Article  Google Scholar 

  6. A. G. Rybkin, A. A. Rybkina, M. M. Otrokov, et al., Nano Lett. 18, 3 (2018).

    Article  Google Scholar 

  7. S. Ghosh, I. Calizo, D. Teweldebrhan, et al., Appl. Phys. Lett. 92, 151911 (2008).

  8. K. V. Emtsev, F. Speck, Th. Seyller, et al., Phys. Rev. B 77, 155303 (2008).

  9. Y. Han, J.-G. Wan, G.-X. Ge, et al., Sci. Rep. 5, 16843 (2015).

    Article  ADS  Google Scholar 

  10. N. Mishra, J. Boeckl, N. Motta, and F. Iacopi, Phys. Status Solidi A 213, 9 (2016).

    Google Scholar 

  11. J. B. Hannon, M. Copel, and R. M. Tromp, Phys. Rev. Lett. 107, 166101 (2011).

  12. C. Riedl, C. Coletti, and U. Starke, J. Phys. D: Appl. Phys. 43, 37 (2010).

    Article  Google Scholar 

  13. K. Yagyu, T. Tajiri, A. Kohno, et al., J. Vacuum Soc. Jpn. 57, 7 (2014).

    Article  Google Scholar 

  14. S. Wolff, S. Roscher, F. Timmermann, et al., J. Vacuum Soc. Jpn. 57, 7 (2014).

    Google Scholar 

  15. K. V. Emtsev, A. A. Zakharov, C. Coletti, et al., Phys. Rev. B 84, 125423 (2011).

  16. J. A. Betancourt-Cantera, F. Sánchez-De Jesús, A. M. Bolarín-Miró, et al., J. Mater. Res. Technol. 8, 5 (2019).

    Article  Google Scholar 

  17. Zh. Ji, X. Shen, Y. Song, et al., Mater. Sci. Eng. B 176, 9 (2011).

    Article  Google Scholar 

  18. G. S. Grebenyuk, I. A. Eliseev, S. P. Lebedev, E. Yu. Lobanova, D. A. Smirnov, V. Yu. Davydov, A. A. Lebedev, and I. I. Pronin, Phys. Solid State 62, 519 (2020).

    Article  ADS  Google Scholar 

  19. C. Riedl, C. Coletti, T. Iwasaki, et al., Phys. Rev. Lett. 103, 246804 (2009).

  20. D. P. Xing, H. Zh. Zeng, W. X. Zhang, et al., IOP Conf. Ser.: Mater. Sci. Eng. 490 (2019).

  21. Y.-L. Jiang, X.-P. Qu, G.-P. Ru, et al., Appl. Phys. A 99, 93 (2010).

    Article  ADS  Google Scholar 

  22. J. Zhao, Surf. Sci. Spectra 7, 322 (2000).

    Article  ADS  Google Scholar 

  23. A. A. Gogina, A. G. Rybkin, A. M. Shikin, A. V. Tarasov, L. Petaccia, G. Di Santo, I. A. Eliseyev, S. P. Lebedev, V. Yu. Davydov, and I. I. Klimovskikh, J. Exp. Theor. Phys. 132, 906 (2021).

    Article  ADS  Google Scholar 

  24. M. Garcia-Mendez, F. F. Castillonl, G. A. Hirata, et al., Appl. Surf. Sci. 161, 61 (2000).

    Article  ADS  Google Scholar 

  25. S. Doǧana, D. Johnstoneb, F. Yun, S. Sabuktagin, et al., Appl. Phys. Lett. 85, 1547 (2004).

  26. E. Emorhokpor, T. Kerr, and I. Zwieback, RS OnlineProc. Libr. 815, 136 (2004).

    Google Scholar 

  27. V. G. Kotlyar, A. Alekseev, A. Olyanich, et al., Chem. Phys. Lett. 372, 1 (2003).

    Article  Google Scholar 

  28. J. E. Lee, G. Ahn, J. Shim, et al., Nat. Commun. 3, 1024 (2012).

    Article  ADS  Google Scholar 

  29. I. A. Eliseyev, V. Yu. Davydov, A. N. Smirnov, et al., Semiconductors 53, 1904 (2019).

    Article  ADS  Google Scholar 

  30. F.-M. Liu, B. Rena, Y.-X. Jianga, et al., Chem. Phys. Lett. 372, 1 (2003).

    Article  ADS  Google Scholar 

  31. D. Yu. Usachov, A. V. Fedorov, O. Yu. Vilkov, et al., Phys. Rev. B 97, 085132 (2018).

  32. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, et al., Phys. Rev. Lett. 101, 086402 (2008).

  33. Z. J. Pan, L. T. Zhanga, and J. S. Wu, J. Appl. Phys. 101, 033715 (2007).

  34. C. Pirri, J. C. Peruchetti, G. Gewinner, et al., Solid State Commun. 57, 5 (1986).

    Article  Google Scholar 

  35. P. S. Bagus, Phys. Rev. A 639, 139b (1965).

    Google Scholar 

  36. N. P. Bellafont, P. S. Bagus, and F. Illas, J. Chem. Phys. 142, 21 (2015).

    Google Scholar 

  37. T. Ozaki, Phys. Rev. B 67, 155108 (2003).

  38. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).

  39. J. P. Perdew, K. Burke, and M. Ernzerho, Phys. Rev. Lett. 78, 1396 (1997).

    Article  ADS  Google Scholar 

  40. Ch.-Ch. Lee, Y. Yamada-Takamura, and T. Ozaki, J. Phys.: Condens. Matter 25, 34 (2013).

    Google Scholar 

  41. P. Blaha, K. Schwarz, and F. Tran, J. Chem. Phys. 152, 074101 (2020).

  42. P. Villars and K. Cenzual, CoSi2 Crystal Structure. https://materials.springer.com/isp/crystallographic/docs/sd_0452326.

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2020-797 (13.1902.21.0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Filnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filnov, S.O., Rybkina, A.A., Tarasov, A.V. et al. Analysis of Cobalt Intercalation under the Buffer Carbon Layer on a SiC(0001) Single Crystal. J. Exp. Theor. Phys. 134, 188–196 (2022). https://doi.org/10.1134/S1063776122020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122020121

Navigation