Skip to main content
Log in

Crystallographic Parameters of Special Grain Boundaries in Multicrystalline Silicon

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The orientation of grains and the special boundaries formed by them in multicrystalline silicon has been studied by electron backscattered diffraction. It is found that the crystallographic parameters of special boundaries (misorientation angle and rotation axis) obtained using the Tango HKL Channel 5 software module may differ from the results of their direct computation by calculating the rotation matrix in the Spyder integrated development environment, using identical formulas based on Euler angles. In particular, special boundaries ∑3, ∑9, and ∑27a with misorientation angles of 180°, 120°, and 165°, respectively, are found in multicrystalline silicon. These versions of special grain boundaries are theoretically possible for the crystals of cubic system; however, they have not been investigated experimentally in multicrystalline silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Benick, A. Richter, R. Muller, and H. Hauser, IEEE J. Photovoltaics B 7 (5), 1171 (2017).

    Article  Google Scholar 

  2. V. Osinniy, P. Bomholt, A. Nylandsted Larsen, et al., Solar En. Mater. Solar Cells B 95 (2), 564 (2011).

    Article  Google Scholar 

  3. H. Ch. Sio, S. Ph. Phang, T. Trupke, et al., IEEE J. Photovoltaics B 5 (5), 1357 (2015).

    Article  Google Scholar 

  4. K. Adamczyk, R. Sondena, G. Stokkan, et al., J. Appl. Phys. B 123 (5), 055705 (2018).

    Article  ADS  Google Scholar 

  5. J. Chen, T. Sekiguchi, D. Yang, et al., J. Appl. Phys. B 96 (10), 5490 (2004).

    Article  ADS  Google Scholar 

  6. B. Chen, J. Chen, T. Sekiguchi, et al., J. Appl. Phys. B 105 (11), 113502 (2009).

    Article  ADS  Google Scholar 

  7. R. R. Prakash, Ph. D. Thesis (Univ. of  Tsukuba, Tsukuba, Japan).

  8. S. M. Peshcherova, E. B. Yakimov, A. I. Nepomnya-shchikh, et al., Semiconductors 49 (6), 724 (2015).

    Article  ADS  Google Scholar 

  9. A. J. Morawiec, Appl. Cryst. B 44, 1152 (2011).

    Article  Google Scholar 

  10. A. J. Morawiec, Mater. Sci. Forum. B 702–703, 697 (2012).

  11. V. Yu. Lazebnykh and A. S. Mysovsky, J. Appl. Phys. B 118 (13), 135704 (2015).

    Article  ADS  Google Scholar 

  12. A. Stoffers, O. Cojocaru-Miredin, W. Seifert, et al., Prog. Photovoltaics Res. Appl. B 23 (12), 1742 (2015).

    Article  Google Scholar 

  13. G. Stokkan, A. Stoss, M. Kivambe, et al., 28th European Photovoltaic Solar Energy Conference and Exhibition B (2013), p. 14.

  14. L. Chuang, K. Maeda, H. Morito, et al., Scr. Mater. B 148, 37 (2018).

    Article  Google Scholar 

  15. M. L. Lobanov, A. S. Yurovskikh, N. I. Kardonina, and G. M. Rusakov, Methods for Studying Textures in Materials (Izd-vo Ural’skogo Univ., Yekaterinburg, 2014) [in Russian].

    Google Scholar 

  16. A. Shvarts, M. Kumar, B. Adams, and D. Fild, Method of Reflected Electron Diffraction in Materials Science (Tekhnosfera, Moscow, 2014) [in Russian].

    Google Scholar 

  17. Oxford Instrument HKL Technology CHANNEL 5: User Manual (Hobro, Denmark, 2007), p. 475.

  18. S. M. Mokrova, R. P. Petrov, and V. N. Milich, Vestn. Udmurt. Univ.: Mat. Mekh. Comp’ut. Nauki 26 (3), 336 (2016).

    Google Scholar 

  19. A. V. Tverdokhlebova, Candidate’s Dissertation in Physics and Mathematics (IFPM SO RAN, Tomsk, 2017).

  20. O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation (Taylor and Francis, 2009), p. 488.

    Book  Google Scholar 

  21. H.-J. Bunge, Texture Analysis in Materials Science (Institut fur Metallkunde und Metallphysic, Technische Universitat Clausthal, 1969).

    Google Scholar 

  22. J. S. Dai, Mech. Mach. Theor. B 92, 144 (2015).

    Article  Google Scholar 

  23. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  24. F. J. Hampherys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Univ. of Manchester, Institute of Science and Technology, UK and Univ. of New South Wales, Australia, 2004).

Download references

Funding

This study was supported by a State contract (project no. IX.125.3.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Chueshova.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueshova, A.G., Pavlova, L.A., Peshcherova, S.M. et al. Crystallographic Parameters of Special Grain Boundaries in Multicrystalline Silicon. Crystallogr. Rep. 66, 1206–1215 (2021). https://doi.org/10.1134/S106377452107004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452107004X

Navigation