Skip to main content
Log in

Populations of Ultraluminous X-ray Sources in Galaxies: Origin and Evolution

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A model of the population of ultraluminous X-ray sources (ULXs) in binary systems with black hole (BH) accretors is constructed by hybrid population synthesis and is compared with the model of the population of ULXs with magnetized neutron stars (NSs) that can be observed as pulsating ULXs (Kuranov et al. 2020). A model of the formation of BHs whereby their mass is determined by the mass of the CO core immediately before its collapse (\(M_{\mathrm{CO}}\)) and ‘‘delayed’’ and ‘‘rapid’’ collapse models (Fryer et al. 2012) are considered. The possible transiency of ULXs due to accretion disk instability is taken into account. The parameters and evolution of ULXs in galaxies with a constant star formation rate (SFR) and in those with an old stellar population after an instantaneous star formation burst are computed. The maximum number of ULXs with BHs (\({\sim}10\)) is reached in galaxies with a stationary \(SFR=10M_{\odot}\) yr\({}^{-1}\) \({\sim}1\) Gyr after the beginning of star formation. ULXs observed after the end of star formation are close binary systems in which BHs and/or NSs formed before the end of star formation, while long-lived donors with a mass \({\sim}M_{\odot}\) continue to overflow their Roche lobes after its end or have filled their Roche lobes even later. Several Gyr after the end of star formation the number of ULXs in galaxies with a mass \(M_{G}=10^{10}M_{\odot}\) is no more than 0.1, most of them are ULXs with NSs. Persistent sources with a Roche-lobe-overflowing optical star dominate in ULXs with NSs, irrespective of the adopted star formation model. The transient sources are an order of magnitude fewer. The ULXs accreting from the stellar wind of the optical component are an order of magnitude fewer than the sources with accretion via Roche lobe overflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The changes introduced by us into the code make it, as our tests show, almost identical to the new author’s version of BSE (Banerjee et al. 2020).

  2. Eq. (12) from Paper I.

  3. Laplace et al. (2021) studied this issue in detail, but only for the ranges of masses corresponding to the NS progenitors. They also drew attention to the fact that the isotopic composition of presupernovae in these cases is different.

REFERENCES

  1. M. A. Abramowicz, B. Czerny, J.-P. Lasota, et al., Astrophys. J. 332, 646 (1988).

    Article  ADS  Google Scholar 

  2. E. Ambrosi, L. Zampieri, F. Pintore, and A. Wolter, arXiv: 2111.02879 (2021).

  3. P. Atri, J. C. A. Miller-Jones, A. Bahramian, et al., Mon. Not. R. Astron. Soc. 489, 3116 (2019).

    Article  ADS  Google Scholar 

  4. M. Bachetti et al., Nature (London, U.K.) 514, 202 (2014).

    Article  ADS  Google Scholar 

  5. S. Banerjee, K. Belczynski, C.-L. Fryer, et al., Astron. Astrophys. 639, A41 (2020).

    Article  Google Scholar 

  6. E. R. Beasor, B. Davies, and N. Smith, arXiv: 2109.03239 (2021).

  7. M. C. Bernadich, A. D. Schwope, K. Kovlakas, et al., arXiv: 2110.14562 (2021).

  8. B. Binder, E. M. Levesque, and T. Dorn-Wallenstein, Astrophys. J. 863, 41 (2018).

    Article  Google Scholar 

  9. T. A. Callister, W. M. Farr, and M. Renzo, Astrophys. J. 920, 157 (2021).

    Article  ADS  Google Scholar 

  10. A. M. Cherepashchuk, Phys. Usp. 59, 702 (2016).

    Article  ADS  Google Scholar 

  11. E. J. M. Colbert and R. F. Mushotzky, Astrophys. J. 519, 89 (1999).

    Article  ADS  Google Scholar 

  12. M. Coriat, R. P. Fender, and G. Dubus, Mon. Not. R. Astron. Soc. 424, 1991 (2012).

    Article  ADS  Google Scholar 

  13. L. Dessart, A. Burrows, C.-D. Ott, et al., Astrophys. J. 644, 1063 (2006).

    Article  ADS  Google Scholar 

  14. G. Dubus, J.-P. Lasota, J.-M. Hameury, et al., Mon. Not. R. Astron. Soc. 303, 139 (1999).

    Article  ADS  Google Scholar 

  15. I. El Mellah, J. O. Sundqvist, and R. Keppens, Astron. Astrophys. 622, L3 (2019).

    Article  ADS  Google Scholar 

  16. T. Ertl, S. E. Woosley, T. Sukhbold, et al., Astrophys. J. 890, 51 (2020).

    Article  ADS  Google Scholar 

  17. S. N. Fabrika and A. V. Mescheryakov, in Proceedings of the IAU Symposium No. 205, Ed. by R. T. Schilizzi (2001), p. 268.

  18. S. N. Fabrika, K. E. Atapin, A. S. Vinokurov, et al., Astrophys. Bull. 76, 6 (2021).

    Article  ADS  Google Scholar 

  19. E. Fonseca, H. T. Cromartie, T. T. Pennucci, et al., Astrophys. J. Lett. 915, L12 (2021).

    Article  ADS  Google Scholar 

  20. C. L. Fryer, K. Belczynski, G. Wiktorowicz, et al., Astrophys. J. 749, 91 (2012).

    Article  ADS  Google Scholar 

  21. M. Gallegos-Garcia, C. P. L. Berry, P. Marchant, et al., arXiv: 2107.05702 (2021).

  22. N. Giacobbo and M. Mapelli, Mon. Not. R. Astron. Soc. 480, 2011 (2018).

    Article  ADS  Google Scholar 

  23. S. A. Grebenev, Astron. Lett. 43, 464 (2017).

    Article  ADS  Google Scholar 

  24. J.-M. Hameury and J.-P. Lasota, Astron. Astrophys. 643, A171 (2020).

    Article  Google Scholar 

  25. R. Hirai and I. Mandel, arXiv: 2108.03774 (2021).

  26. G. Hobbs et al., Mon. Not. R. Astron. Soc. 360, 974 (2005).

    Article  ADS  Google Scholar 

  27. J. Hurley et al., Mon. Not. R. Astron. Soc. 329, 897 (2002).

    Article  ADS  Google Scholar 

  28. G. L. Israel et al., Mon. Not. R. Astron. Soc. 466, L48 (2017).

    Article  ADS  Google Scholar 

  29. N. Ivanova, S. Justham, X. Chen, et al., Astron. Astrophys. Rev. 21, 59 (2013).

    Article  ADS  Google Scholar 

  30. N. Ivanova, S. Justham, and P. Ricker, Common Envelope Evolution, AAS-IOP Astron. Book Ser. (IOP, Boston, 2020).

  31. C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht, Astron. Astrophys. Suppl. Ser. 72, 259 (1988).

    ADS  Google Scholar 

  32. P. Kaaret, H. Feng, T. Roberts, et al., Ann. Rev. Astron. Astrophys. 55, 303 (2017).

    Article  ADS  Google Scholar 

  33. A. King et al., Astrophys. J. Lett. 552, L109 (2001).

    Article  ADS  Google Scholar 

  34. A. R. King, Mon. Not. R. Astron. Soc. 393, L41 (2009).

    Article  ADS  Google Scholar 

  35. R. Kippenhahn and A. Weigert, Zeitschr. Astrophys. 65, 251 (1967).

    ADS  Google Scholar 

  36. R. Kippenhahn, K. Kohl, and A. Weigert, Zeitschr. Astrophys. 66, 58 (1967).

    ADS  Google Scholar 

  37. J. Klencki, G. Nelemans, A. G. Istrate, et al., Astron. Astrophys. 638, A55 (2020).

    Article  ADS  Google Scholar 

  38. J. Klencki, G. Nelemans, A. G. Istrate, et al., Astron. Astrophys. 645, A54 (2021a).

    Article  Google Scholar 

  39. J. Klencki, A. G. Istrate, G. Nelemans, et al., arXiv: 2111.10271 (2021b).

  40. M. de Kool, Astrophys. J. 358, 189 (1990).

    Article  ADS  Google Scholar 

  41. A. G. Kuranov, K. A. Postnov, and L. R. Yungel’son, Astron. Lett. 46, 658 (2020).

    Article  ADS  Google Scholar 

  42. E. Laplace, S. Justham, M. Renzo, et al., arXiv: 2102.05036 (2021).

  43. K. M. López, M. Heida, P. G. Jonker, et al., Mon. Not. R. Astron. Soc. 497, 917 (2020).

    Article  ADS  Google Scholar 

  44. E. Lovegrove and S. E. Woosley, Astrophys. J. 769, 109 (2013).

    Article  ADS  Google Scholar 

  45. A.-J. Loveridge et al., Astrophys. J. 743, 49 (2011).

    Article  ADS  Google Scholar 

  46. M. MacLeod, E. C. Ostriker, and R. Stone, Astrophys. J. 863, 5 (2018).

    Article  ADS  Google Scholar 

  47. P. Marchant et al., Astron. Astrophys. 604, A55 (2017).

    Article  Google Scholar 

  48. A. Miglio, C. Chiappini, J. T. Mackereth, et al., Astron. Astrophys. 645, A85 (2021).

    Article  Google Scholar 

  49. S. Motch et al., Nature (London, U.K.) 514, 198 (2014).

    Article  ADS  Google Scholar 

  50. A. A. Mushtukov et al., Mon. Not. R. Astron. Soc. 501, 2424 (2021).

    Article  ADS  Google Scholar 

  51. D. K. Nadezhin, Astroph. Space Sci. 69, 115 (1980).

    Article  ADS  Google Scholar 

  52. T. Nugis and H. J. G. L. M. Lamers, Astron. Astrophys. 360, 227 (2000).

    ADS  Google Scholar 

  53. B. Paxton et al., Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  54. M. Plavec, R. K. Ulrich, and R. S. Polidan, Publ. Astron. Soc. Pacif. 85, 769 (1973).

    Article  ADS  Google Scholar 

  55. A. J. T. Poelarends, S. Wurtz, J. Tarka, et al., Astrophys. J. 850, 197 (2017).

    Article  ADS  Google Scholar 

  56. C. A. Raithel, T. Sukhbold, and F. Özel, Astrophys. J. 856, 35 (2018).

    Article  ADS  Google Scholar 

  57. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  58. Y. Shao and X.-D. Li, Astrophys. J. 802, 131 (2015).

    Article  ADS  Google Scholar 

  59. Y. Shao et al., Astrophys. J. 886, 118 (2019).

    Article  ADS  Google Scholar 

  60. S. J. Smartt, Publ. Astron. Soc. Austral. 32, 016 (2015).

  61. G. E. Soberman et al., Astron. Astrophys. 327, 620 (1997).

    ADS  Google Scholar 

  62. S. S. Tsygankov, A. A. Mushtukov, V. F. Suleimanov, et al., Mon. Not. R. Astron. Soc. 457, 1101 (2016).

    Article  ADS  Google Scholar 

  63. A. V. Tutukov, L. R. Yungel’son, and A. Klyaiman, Nauch. Inform. 27, 3 (1973).

    ADS  Google Scholar 

  64. J. S. Vink, arXiv: 2109.08164 (2021).

  65. J. S. Vink, A. de Koter, and H. J. G. L. M. Lamers, Astron. Astrophys. 362, 295 (2000).

    ADS  Google Scholar 

  66. J. Vink et al., Astron. Astrophys. 369, 574 (2001).

    Article  ADS  Google Scholar 

  67. M. Volonteri, M. Habouzit, and M. Colpi, Nat. Rev. Phys. 3, 732 (2021).

    Article  Google Scholar 

  68. D. J. Walton et al., Astrophys. J. Lett. 857, L3 (2018).

    Article  ADS  Google Scholar 

  69. D. J. Walton, A. D. A. Mackenzie, H. Gully, et al., Mon. Not. R. Astron. Soc. (2021); arXiv: 2110.07625.

  70. R. F. Webbink, Astrophys. J. 277, 355 (1984).

    Article  ADS  Google Scholar 

  71. N. E. White and J. van Paradijs, Astrophys. J. Lett. 473, L25 (1996).

    Article  ADS  Google Scholar 

  72. G. Wiktorowicz et al., Astrophys. J. 846, 17 (2017).

    Article  ADS  Google Scholar 

  73. G. Wiktorowicz et al., Astrophys. J. 875, 53 (2019).

    Article  ADS  Google Scholar 

  74. G. Wiktorowicz, J.-P. Lasota, K. Belczynski, et al., Astrophys. J. 918, 60 (2021).

    Article  ADS  Google Scholar 

  75. F. Yuan and R. Narayan, Annual Rev. Astron. Astrophys. 52, 529 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-02-00790). A.G. Kuranov and K.A. Postnov were supported by the Interdisciplinary Scientific and Educational School of the Moscow Sate University ‘‘Fundamental and Applied Space Research’’. L.R. Yungelson was supported in part by the Russian Foundation for Basic Research (project no. 19-07-01198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kuranov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuranov, A.G., Postnov, K.A. & Yungelson, L.R. Populations of Ultraluminous X-ray Sources in Galaxies: Origin and Evolution. Astron. Lett. 47, 831–855 (2021). https://doi.org/10.1134/S1063773721120021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721120021

Keywords:

Navigation